These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 317090)

  • 61. Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes.
    Hermolin J; Karell MA; Hamm HE; Bownds MD
    J Gen Physiol; 1982 Apr; 79(4):633-55. PubMed ID: 6279759
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A stage in glycolysis controls the metabolic adjustments of vertebrate rod photoreceptors upon illumination.
    Ostroy SE; Svoboda RA; Wilson MJ
    Biochem Biophys Res Commun; 1990 Apr; 168(1):155-60. PubMed ID: 2109606
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Na+- and cGMP-induced Ca2+ fluxes in frog rod photoreceptors.
    Schnetkamp PP; Bownds MD
    J Gen Physiol; 1987 Mar; 89(3):481-500. PubMed ID: 3031199
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Differential control of protein kinase activities of the retinal photoreceptor. Cation effects on phosphorylation by adenosine and guanosine 5'-triphosphates.
    Chader GJ; Fletcher RT; Russell P; Krishna G
    Biochemistry; 1980 Jun; 19(12):2634-8. PubMed ID: 7397094
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Subsecond deactivation of transducin by endogenous GTP hydrolysis.
    Vuong TM; Chabre M
    Nature; 1990 Jul; 346(6279):71-4. PubMed ID: 2164156
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Light-initiated changes of cyclic guanosine monophosphate levels in the frog retina measured with quick-freezing techniques.
    Kilbride P; Ebrey TG
    J Gen Physiol; 1979 Sep; 74(3):415-26. PubMed ID: 225407
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protons suppress the dark current of frog retinal rods.
    Liebman PA; Mueller P; Pugh EN
    J Physiol; 1984 Feb; 347():85-110. PubMed ID: 6608584
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Light-induced phosphorylation of rod outer segments by guanosine triphosphate.
    Chader GJ; Fletcher RT; Krishna G
    Biochem Biophys Res Commun; 1975 May; 64(2):535-8. PubMed ID: 167747
    [No Abstract]   [Full Text] [Related]  

  • 69. Kinetics of light-dependent Ca fluxes across the plasma membrane of rod outer segments. A dynamic model of the regulation of the cytoplasmic Ca concentration.
    Miller DL; Korenbrot JI
    J Gen Physiol; 1987 Sep; 90(3):397-425. PubMed ID: 3116153
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Elemental distribution in Rana pipiens retinal rods: quantitative electron probe analysis.
    Somlyo AP; Walz B
    J Physiol; 1985 Jan; 358():183-95. PubMed ID: 3920385
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The concentration of cytosolic free calcium in vertebrate rod outer segments measured with fura-2.
    Ratto GM; Payne R; Owen WG; Tsien RY
    J Neurosci; 1988 Sep; 8(9):3240-6. PubMed ID: 2459322
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cyclic nucleotide-dependent phosphorylation of proteins in rod outer segments in frog retina. Characteristics of the phosphorylated proteins and their dephosphorylation.
    Shinozawa T; Yoshizawa T
    J Biol Chem; 1986 Jan; 261(1):216-23. PubMed ID: 3001049
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin.
    Kawamura S
    Nature; 1993 Apr; 362(6423):855-7. PubMed ID: 8386803
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optical probes of intradiskal processes in rod photoreceptors. I: Light-scattering study of ATP-dependent dark reactions.
    Uhl R; Zellmann-Kraska R; Desel H
    J Photochem Photobiol B; 1989 Aug; 3(4):529-48. PubMed ID: 2529360
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dim background light and Cerenkov radiation from 32P block reversal of rhodopsin phosphorylation in intact frog retinal rods.
    Biernbaum MS; Binder BM; Bownds MD
    Vis Neurosci; 1991 Nov; 7(5):499-503. PubMed ID: 1764418
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Taurine activation of a bicarbonate-dependent, ATP-supported calcium uptake in frog rod outer segments.
    Pasantes-Morales H; Ordóñez A
    Neurochem Res; 1982 Mar; 7(3):317-28. PubMed ID: 6125903
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Light-induced losses and dark recovery rates of guanosine 3',5'-cyclic monophosphate in rod outer segments of intact amphibian photoreceptors.
    Cohen AI; Blazynski C
    J Gen Physiol; 1988 Dec; 92(6):731-46. PubMed ID: 2851028
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Calcium effects on frog retinal cyclic guanosine 3', 5'-monophosphate levels and their light-initiated rate of decay.
    Kilbride P
    J Gen Physiol; 1980 Apr; 75(4):457-65. PubMed ID: 6247421
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Light stimulates phosphorylation of two large membrane proteins in frog photoreceptors.
    Szuts EZ
    Biochemistry; 1985 Jul; 24(15):4176-84. PubMed ID: 3876846
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Guanine nucleotide concentrations in vivo in outer segments of dark and light adapted frog retina.
    de Azeredo FA; Lust WD; Passonneau JV
    Biochem Biophys Res Commun; 1978 Nov; 85(1):293-300. PubMed ID: 217375
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.