These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31709240)

  • 1. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective.
    Huertas CS; Calvo-Lozano O; Mitchell A; Lechuga LM
    Front Chem; 2019; 7():724. PubMed ID: 31709240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive Label-Free Nucleic-Acid Biosensors Based on Bimodal Waveguide Interferometers.
    Huertas CS; Lechuga LM
    Methods Mol Biol; 2022; 2393():89-125. PubMed ID: 34837176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free plasmonic biosensors for point-of-care diagnostics: a review.
    Soler M; Huertas CS; Lechuga LM
    Expert Rev Mol Diagn; 2019 Jan; 19(1):71-81. PubMed ID: 30513011
    [No Abstract]   [Full Text] [Related]  

  • 4. Silicon Photonic Biosensors Using Label-Free Detection.
    Luan E; Shoman H; Ratner DM; Cheung KC; Chrostowski L
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30340405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofunctionalization of Multiplexed Silicon Photonic Biosensors.
    Puumala LS; Grist SM; Morales JM; Bickford JR; Chrostowski L; Shekhar S; Cheung KC
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Functional-Nucleic-Acid-Based Fluorescent Fiber-Optic Evanescent Wave Biosensors.
    Wang Z; Lou X
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry strategies for label-free optical sensor biofunctionalization: advances towards real applicability.
    Soler M; Lechuga LM
    Anal Bioanal Chem; 2022 Jul; 414(18):5071-5085. PubMed ID: 34735605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lab-on-fiber technology: a new vision for chemical and biological sensing.
    Ricciardi A; Crescitelli A; Vaiano P; Quero G; Consales M; Pisco M; Esposito E; Cusano A
    Analyst; 2015 Dec; 140(24):8068-79. PubMed ID: 26514109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding.
    Adamopoulos C; Gharia A; Niknejad A; Stojanović V; Anwar M
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33202594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures.
    Konoplev G; Agafonova D; Bakhchova L; Mukhin N; Kurachkina M; Schmidt MP; Verlov N; Sidorov A; Oseev A; Stepanova O; Kozyrev A; Dmitriev A; Hirsch S
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attaching biological probes to silica optical biosensors using silane coupling agents.
    Soteropulos CE; Hunt HK
    J Vis Exp; 2012 May; (63):e3866. PubMed ID: 22588224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection.
    Petralia S; Vicario N; Calabrese G; Parenti R; Conoci S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30227672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review.
    Steglich P; Lecci G; Mai A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis.
    Fu L; Zheng Y; Li X; Liu X; Lin CT; Karimi-Maleh H
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays.
    Liu Y; Zhang X
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical biosensors based on refractometric sensing schemes: A review.
    Chen Y; Liu J; Yang Z; Wilkinson JS; Zhou X
    Biosens Bioelectron; 2019 Nov; 144():111693. PubMed ID: 31539719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers.
    Mikaeeli Kangarshahi B; Naghib SM; Rabiee N
    Crit Rev Clin Lab Sci; 2024 Mar; ():1-23. PubMed ID: 38450458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retroreflection-based optical biosensing: From concept to applications.
    Han YD; Kim KR; Lee KW; Yoon HC
    Biosens Bioelectron; 2022 Jul; 207():114202. PubMed ID: 35358947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical biosensors.
    Damborský P; Švitel J; Katrlík J
    Essays Biochem; 2016 Jun; 60(1):91-100. PubMed ID: 27365039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.