These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 31709311)

  • 21. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell-Laden Scaffolds for Vascular-Innervated Bone Regeneration.
    Qin C; Zhang H; Chen L; Zhang M; Ma J; Zhuang H; Huan Z; Xiao Y; Wu C
    Adv Healthc Mater; 2023 May; 12(13):e2201923. PubMed ID: 36748277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of Polymeric Nanofibers Used for 3D-Printed Scaffolds on Cellular Activity in Tissue Engineering: A Review.
    Kharaghani D; Kaffashsaei E; Haider MK; Kim IS
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
    Wan Z; Zhang P; Liu Y; Lv L; Zhou Y
    Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Critical Review on Polymeric Biomaterials for Biomedical Applications.
    Kalirajan C; Dukle A; Nathanael AJ; Oh TH; Manivasagam G
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An insight into cell-laden 3D-printed constructs for bone tissue engineering.
    Swetha S; Lavanya K; Sruthi R; Selvamurugan N
    J Mater Chem B; 2020 Nov; 8(43):9836-9862. PubMed ID: 33030166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecularly engineered metal-based bioactive soft materials - Neuroactive magnesium ion/polymer hybrids.
    Sun L; Wang M; Chen S; Sun B; Guo Y; He C; Mo X; Zhu B; You Z
    Acta Biomater; 2019 Feb; 85():310-319. PubMed ID: 30586648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects.
    Belluomo R; Khodaei A; Amin Yavari S
    Acta Biomater; 2023 Jan; 156():234-249. PubMed ID: 36028198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in bioinks and in vivo imaging of biomaterials for CNS applications.
    Oliveira EP; Malysz-Cymborska I; Golubczyk D; Kalkowski L; Kwiatkowska J; Reis RL; Oliveira JM; Walczak P
    Acta Biomater; 2019 Sep; 95():60-72. PubMed ID: 31075514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Trends in the Development of Bone Regenerative Biomaterials.
    Tang G; Liu Z; Liu Y; Yu J; Wang X; Tan Z; Ye X
    Front Cell Dev Biol; 2021; 9():665813. PubMed ID: 34026758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioactive scaffolds for osteochondral regeneration.
    Deng C; Chang J; Wu C
    J Orthop Translat; 2019 Apr; 17():15-25. PubMed ID: 31194079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity.
    Sanchez-Rubio A; Jayawarna V; Maxwell E; Dalby MJ; Salmeron-Sanchez M
    Adv Healthc Mater; 2023 Jul; 12(17):e2202110. PubMed ID: 36938891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances.
    Derakhshanfar S; Mbeleck R; Xu K; Zhang X; Zhong W; Xing M
    Bioact Mater; 2018 Jun; 3(2):144-156. PubMed ID: 29744452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity?
    Kargozar S; Singh RK; Kim HW; Baino F
    Acta Biomater; 2020 Oct; 115():1-28. PubMed ID: 32818612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.