These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31709525)
1. General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy. Li Z; Mirams GR; Yoshinaga T; Ridder BJ; Han X; Chen JE; Stockbridge NL; Wisialowski TA; Damiano B; Severi S; Morissette P; Kowey PR; Holbrook M; Smith G; Rasmusson RL; Liu M; Song Z; Qu Z; Leishman DJ; Steidl-Nichols J; Rodriguez B; Bueno-Orovio A; Zhou X; Passini E; Edwards AG; Morotti S; Ni H; Grandi E; Clancy CE; Vandenberg J; Hill A; Nakamura M; Singer T; Polonchuk L; Greiter-Wilke A; Wang K; Nave S; Fullerton A; Sobie EA; Paci M; Musuamba Tshinanu F; Strauss DG Clin Pharmacol Ther; 2020 Jan; 107(1):102-111. PubMed ID: 31709525 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive In Vitro Proarrhythmia Assay (CiPA) Update from a Cardiac Safety Research Consortium / Health and Environmental Sciences Institute / FDA Meeting. Strauss DG; Gintant G; Li Z; Wu W; Blinova K; Vicente J; Turner JR; Sager PT Ther Innov Regul Sci; 2019 Jul; 53(4):519-525. PubMed ID: 30157676 [TBL] [Abstract][Full Text] [Related]
3. A general procedure to select calibration drugs for lab-specific validation and calibration of proarrhythmia risk prediction models: An illustrative example using the CiPA model. Han X; Samieegohar M; Ridder BJ; Wu WW; Randolph A; Tran P; Sheng J; Stoelzle-Feix S; Brinkwirth N; Rotordam MG; Becker N; Friis S; Rapedius M; Goetze TA; Strassmaier T; Okeyo G; Kramer J; Kuryshev Y; Wu C; Strauss DG; Li Z J Pharmacol Toxicol Methods; 2020 Sep; 105():106890. PubMed ID: 32574700 [TBL] [Abstract][Full Text] [Related]
4. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Sager PT; Gintant G; Turner JR; Pettit S; Stockbridge N Am Heart J; 2014 Mar; 167(3):292-300. PubMed ID: 24576511 [TBL] [Abstract][Full Text] [Related]
5. CiPA challenges and opportunities from a non-clinical, clinical and regulatory perspectives. An overview of the safety pharmacology scientific discussion. Wallis R; Benson C; Darpo B; Gintant G; Kanda Y; Prasad K; Strauss DG; Valentin JP J Pharmacol Toxicol Methods; 2018; 93():15-25. PubMed ID: 29958940 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive in vitro Proarrhythmia Assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative. Cavero I; Holzgrefe H Expert Opin Drug Saf; 2014 Jun; 13(6):745-58. PubMed ID: 24845945 [TBL] [Abstract][Full Text] [Related]
7. Assessment of an In Silico Mechanistic Model for Proarrhythmia Risk Prediction Under the CiPA Initiative. Li Z; Ridder BJ; Han X; Wu WW; Sheng J; Tran PN; Wu M; Randolph A; Johnstone RH; Mirams GR; Kuryshev Y; Kramer J; Wu C; Crumb WJ; Strauss DG Clin Pharmacol Ther; 2019 Feb; 105(2):466-475. PubMed ID: 30151907 [TBL] [Abstract][Full Text] [Related]
8. Proarrhythmia liability assessment and the comprehensive in vitro Proarrhythmia Assay (CiPA): An industry survey on current practice. Authier S; Pugsley MK; Koerner JE; Fermini B; Redfern WS; Valentin JP; Vargas HM; Leishman DJ; Correll K; Curtis MJ J Pharmacol Toxicol Methods; 2017 Jul; 86():34-43. PubMed ID: 28223123 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Systems Pharmacology Models for a New International Cardiac Safety Regulatory Paradigm: An Overview of the Comprehensive In Vitro Proarrhythmia Assay In Silico Modeling Approach. Li Z; Garnett C; Strauss DG CPT Pharmacometrics Syst Pharmacol; 2019 Jun; 8(6):371-379. PubMed ID: 31044559 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive in vitro Proarrhythmia Assay (CiPA): Pending issues for successful validation and implementation. Cavero I; Guillon JM; Ballet V; Clements M; Gerbeau JF; Holzgrefe H J Pharmacol Toxicol Methods; 2016; 81():21-36. PubMed ID: 27233533 [TBL] [Abstract][Full Text] [Related]
15. Improving prediction of torsadogenic risk in the CiPA in silico model by appropriately accounting for clinical exposure. Leishman DJ J Pharmacol Toxicol Methods; 2020; 101():106654. PubMed ID: 31730936 [TBL] [Abstract][Full Text] [Related]
16. Relationship of clinical adverse event reports to models of arrhythmia risk. Ether N; Leishman D; Bailie M; Lauver A J Pharmacol Toxicol Methods; 2019; 100():106622. PubMed ID: 31398384 [TBL] [Abstract][Full Text] [Related]
17. Recent developments in using mechanistic cardiac modelling for drug safety evaluation. Davies MR; Wang K; Mirams GR; Caruso A; Noble D; Walz A; Lavé T; Schuler F; Singer T; Polonchuk L Drug Discov Today; 2016 Jun; 21(6):924-38. PubMed ID: 26891981 [TBL] [Abstract][Full Text] [Related]
18. Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp. Mann SA; Heide J; Knott T; Airini R; Epureanu FB; Deftu AF; Deftu AT; Radu BM; Amuzescu B J Pharmacol Toxicol Methods; 2019; 100():106599. PubMed ID: 31228558 [TBL] [Abstract][Full Text] [Related]
19. A temperature-dependent in silico model of the human ether-à-go-go-related (hERG) gene channel. Li Z; Dutta S; Sheng J; Tran PN; Wu W; Colatsky T J Pharmacol Toxicol Methods; 2016; 81():233-9. PubMed ID: 27178106 [TBL] [Abstract][Full Text] [Related]
20. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity. Yang X; Papoian T J Appl Toxicol; 2018 Sep; 38(9):1166-1176. PubMed ID: 29484688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]