These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31709657)

  • 1. Genetics and genomics of uniformity and resilience in livestock and aquaculture species: A review.
    Iung LHS; Carvalheiro R; Neves HHR; Mulder HA
    J Anim Breed Genet; 2020 May; 137(3):263-280. PubMed ID: 31709657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic heterogeneity of residual variance of hatch weight in Mazandaran native chicken.
    Yousefi Zonuz A; Alijani S; Rafat SA
    Br Poult Sci; 2019 Aug; 60(4):366-372. PubMed ID: 31046426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic control of residual variance of yearling weight in Nellore beef cattle.
    Iung LHS; Neves HHR; Mulder HA; Carvalheiro R
    J Anim Sci; 2017 Apr; 95(4):1425-1433. PubMed ID: 28464101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the use of residual variance for uniformity of body weight in meat quail lines using Bayesian inference.
    Silva AA; Silva DA; Pereira CRM; Abreu CP; Caetano G; Paiva JT; Silva FF; Lopes PS; Veroneze R
    Br Poult Sci; 2021 Aug; 62(4):474-484. PubMed ID: 33624573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance.
    Mulder HA; Bijma P; Hill WG
    Genet Sel Evol; 2008; 40(1):37-59. PubMed ID: 18096114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of genetic variation in residual variance in female and male broiler chickens.
    Mulder HA; Hill WG; Vereijken A; Veerkamp RF
    Animal; 2009 Dec; 3(12):1673-80. PubMed ID: 22443551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding.
    Brito LF; Oliveira HR; McConn BR; Schinckel AP; Arrazola A; Marchant-Forde JN; Johnson JS
    Front Genet; 2020; 11():793. PubMed ID: 32849798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing genomics to fast-track genetic improvement in aquaculture.
    Houston RD; Bean TP; Macqueen DJ; Gundappa MK; Jin YH; Jenkins TL; Selly SLC; Martin SAM; Stevens JR; Santos EM; Davie A; Robledo D
    Nat Rev Genet; 2020 Jul; 21(7):389-409. PubMed ID: 32300217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic parameters for uniformity of harvest weight and body size traits in the GIFT strain of Nile tilapia.
    Marjanovic J; Mulder HA; Khaw HL; Bijma P
    Genet Sel Evol; 2016 Jun; 48(1):41. PubMed ID: 27286860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breeding for robustness: investigating the genotype-by-environment interaction and micro-environmental sensitivity of Genetically Improved Farmed Tilapia (Oreochromis niloticus).
    Agha S; Mekkawy W; Ibanez-Escriche N; Lind CE; Kumar J; Mandal A; Benzie JAH; Doeschl-Wilson A
    Anim Genet; 2018 Oct; 49(5):421-427. PubMed ID: 30058152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotyping strategies of selection candidates in livestock breeding programmes.
    Granleese T; Clark SA; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):91-101. PubMed ID: 30690805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why breed disease-resilient livestock, and how?
    Knap PW; Doeschl-Wilson A
    Genet Sel Evol; 2020 Oct; 52(1):60. PubMed ID: 33054713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.
    Misztal I
    J Anim Sci; 2017 Apr; 95(4):1780-1787. PubMed ID: 28464095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.
    Renaudeau D; Collin A; Yahav S; de Basilio V; Gourdine JL; Collier RJ
    Animal; 2012 May; 6(5):707-28. PubMed ID: 22558920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits.
    Magee DA; Spillane C; Berkowicz EW; Sikora KM; MacHugh DE
    Anim Genet; 2014 Aug; 45 Suppl 1():25-39. PubMed ID: 24990393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild fish.
    Quinn NL; McGowan CR; Cooper GA; Koop BF; Davidson WS
    Physiol Genomics; 2011 Sep; 43(18):1056-64. PubMed ID: 21750231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association and genomic selection in animal breeding.
    Hayes B; Goddard M
    Genome; 2010 Nov; 53(11):876-83. PubMed ID: 21076503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invited review: Advances and applications of random regression models: From quantitative genetics to genomics.
    Oliveira HR; Brito LF; Lourenco DAL; Silva FF; Jamrozik J; Schaeffer LR; Schenkel FS
    J Dairy Sci; 2019 Sep; 102(9):7664-7683. PubMed ID: 31255270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The research progress of genomic selection in livestock.
    Li HW; Wang RJ; Wang ZY; Li XW; Wang ZY; Yanjun Z; Rui S; Zhihong L; Jinquan L
    Yi Chuan; 2017 May; 39(5):377-387. PubMed ID: 28487270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is Continued Genetic Improvement of Livestock Sustainable?
    Hill WG
    Genetics; 2016 Mar; 202(3):877-81. PubMed ID: 26953266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.