These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31709657)

  • 21. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation.
    Hayes BJ; Lewin HA; Goddard ME
    Trends Genet; 2013 Apr; 29(4):206-14. PubMed ID: 23261029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating the purebred-crossbred genetic correlation for uniformity of eggshell color in laying hens.
    Mulder HA; Visscher J; Fablet J
    Genet Sel Evol; 2016 May; 48(1):39. PubMed ID: 27151311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic improvement of feed conversion ratio via indirect selection against lipid deposition in farmed rainbow trout (Oncorhynchus mykiss Walbaum).
    Kause A; Kiessling A; Martin SA; Houlihan D; Ruohonen K
    Br J Nutr; 2016 Nov; 116(9):1656-1665. PubMed ID: 27813470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of genotyping-by-sequencing for genomic selection in livestock populations.
    Gorjanc G; Cleveland MA; Houston RD; Hickey JM
    Genet Sel Evol; 2015 Mar; 47(1):12. PubMed ID: 25887531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of genomic predictions for harvest and carcass weight in channel catfish.
    Garcia ALS; Bosworth B; Waldbieser G; Misztal I; Tsuruta S; Lourenco DAL
    Genet Sel Evol; 2018 Dec; 50(1):66. PubMed ID: 30547740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Domestication genomics: evidence from animals.
    Wang GD; Xie HB; Peng MS; Irwin D; Zhang YP
    Annu Rev Anim Biosci; 2014 Feb; 2():65-84. PubMed ID: 25384135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic (co)variance of rainbow trout (Oncorhynchus mykiss) body weight and its uniformity across production environments.
    Sae-Lim P; Kause A; Janhunen M; Vehviläinen H; Koskinen H; Gjerde B; Lillehammer M; Mulder HA
    Genet Sel Evol; 2015 May; 47(1):46. PubMed ID: 25986847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing accuracy of genomic selection in presence of high density marker panels through the prioritization of relevant polymorphisms.
    Chang LY; Toghiani S; Aggrey SE; Rekaya R
    BMC Genet; 2019 Feb; 20(1):21. PubMed ID: 30795734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Opportunities to Improve Resilience in Animal Breeding Programs.
    Berghof TVL; Poppe M; Mulder HA
    Front Genet; 2018; 9():692. PubMed ID: 30693014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applied animal genomics: results from the field.
    Van Eenennaam AL; Weigel KA; Young AE; Cleveland MA; Dekkers JC
    Annu Rev Anim Biosci; 2014 Feb; 2():105-39. PubMed ID: 25384137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of genetic variance in the age of genomics.
    Jensen J
    J Anim Breed Genet; 2016 Oct; 133(5):333. PubMed ID: 27616719
    [No Abstract]   [Full Text] [Related]  

  • 33. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends.
    Santana ML; Pereira RJ; Bignardi AB; Filho AE; Menéndez-Buxadera A; El Faro L
    J Dairy Sci; 2015 Dec; 98(12):9035-43. PubMed ID: 26476953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can we make genomic selection 100% accurate?
    Goddard ME
    J Anim Breed Genet; 2017 Aug; 134(4):287-288. PubMed ID: 28699266
    [No Abstract]   [Full Text] [Related]  

  • 35. Livestock 2.0 - genome editing for fitter, healthier, and more productive farmed animals.
    Tait-Burkard C; Doeschl-Wilson A; McGrew MJ; Archibald AL; Sang HM; Houston RD; Whitelaw CB; Watson M
    Genome Biol; 2018 Nov; 19(1):204. PubMed ID: 30477539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating heritability using family-pooled phenotypic and genotypic data: a simulation study applied to aquaculture.
    Khalilisamani N; Thomson PC; Raadsma HW; Khatkar MS
    Heredity (Edinb); 2022 Mar; 128(3):178-186. PubMed ID: 35102270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of methods to study uniformity of traits: Application to birth weight in pigs.
    Sell-Kubiak E; Bijma P; Knol EF; Mulder HA
    J Anim Sci; 2015 Mar; 93(3):900-11. PubMed ID: 26020868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic analysis of within-litter variation in piglets' birth weight using genomic or pedigree relationship matrices.
    Sell-Kubiak E; Wang S; Knol EF; Mulder HA
    J Anim Sci; 2015 Apr; 93(4):1471-80. PubMed ID: 26020168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gametic gene flow method accounts for genomic imprinting.
    Börner V; Reinsch N
    J Anim Breed Genet; 2010 Jun; 127(3):215-29. PubMed ID: 20536639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomics of Heat Tolerance in Reproductive Performance Investigated in Four Independent Maternal Lines of Pigs.
    Tiezzi F; Brito LF; Howard J; Huang YJ; Gray K; Schwab C; Fix J; Maltecca C
    Front Genet; 2020; 11():629. PubMed ID: 32695139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.