These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31709671)

  • 1. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy.
    Zhang Z; Wang Q; Liu Q; Zheng Y; Zheng C; Yi K; Zhao Y; Gu Y; Wang Y; Wang C; Zhao X; Shi L; Kang C; Liu Y
    Adv Mater; 2019 Dec; 31(51):e1905751. PubMed ID: 31709671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy.
    Xu Y; Chen C; Guo Y; Hu S; Sun Z
    Front Immunol; 2022; 13():848327. PubMed ID: 35300341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression.
    Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K
    Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy.
    Liu J; Li G; Guo H; Ni C; Gao Y; Cao X; Xia J; Shi X; Guo R
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12809-12821. PubMed ID: 36853989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy.
    Wei S; Shao X; Liu Y; Xiong B; Cui P; Liu Z; Li Q
    J Mater Chem B; 2022 Feb; 10(8):1291-1300. PubMed ID: 35141737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling Tumor Immunogenicity with Dual-Activatable Binary CRISPR Nanomedicine for Cancer Immunotherapy.
    Xing Y; Yang J; Wang Y; Wang C; Pan Z; Liu FL; Liu Y; Liu Q
    ACS Nano; 2023 Mar; 17(6):5713-5726. PubMed ID: 36897187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death.
    Tu K; Deng H; Kong L; Wang Y; Yang T; Hu Q; Hu M; Yang C; Zhang Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16018-16030. PubMed ID: 32192326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review.
    Zhou Z; Wang H; Li J; Jiang X; Li Z; Shen J
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127911. PubMed ID: 37939766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy.
    Liu Q; Wang C; Zheng Y; Zhao Y; Wang Y; Hao J; Zhao X; Yi K; Shi L; Kang C; Liu Y
    Biomaterials; 2020 Nov; 258():120275. PubMed ID: 32798741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment.
    Tsukamoto H; Fujieda K; Miyashita A; Fukushima S; Ikeda T; Kubo Y; Senju S; Ihn H; Nishimura Y; Oshiumi H
    Cancer Res; 2018 Sep; 78(17):5011-5022. PubMed ID: 29967259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid and efficient platform for antiviral crRNA screening using CRISPR-Cas13a-based nucleic acid detection.
    Yang L; Zhang Y; Yi W; Dong X; Niu M; Song Y; Han Y; Li H; Sun Y
    Front Immunol; 2023; 14():1116230. PubMed ID: 37228594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Unlocking Nano-Matryoshka-CRISPR Precisely Reverses Immunosuppression to Unleash Cascade Amplified Adaptive Immune Response.
    Yang J; Li Z; Shen M; Wang Y; Wang L; Li J; Yang W; Li J; Li H; Wang X; Wu Q; Gong C
    Adv Sci (Weinh); 2021 Jul; 8(13):2100292. PubMed ID: 34258164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure).
    Kim JM; Chen DS
    Ann Oncol; 2016 Aug; 27(8):1492-504. PubMed ID: 27207108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer.
    Liu C; Wang N; Luo R; Li L; Yang W; Wang X; Shen M; Wu Q; Gong C
    Theranostics; 2021; 11(20):9833-9846. PubMed ID: 34815789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand- 1 (PD-L1) in ovarian cancer.
    Drakes ML; Mehrotra S; Aldulescu M; Potkul RK; Liu Y; Grisoli A; Joyce C; O'Brien TE; Stack MS; Stiff PJ
    J Ovarian Res; 2018 May; 11(1):43. PubMed ID: 29843813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Cancer-Specific Cytotoxic PD-1
    Lu S; Yang N; He J; Gong W; Lai Z; Xie L; Tao L; Xu C; Wang H; Zhang G; Cao H; Zhou C; Zhong L; Zhao Y
    J Biomed Nanotechnol; 2019 Mar; 15(3):593-601. PubMed ID: 31165703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles.
    Gong C; Yu X; Zhang W; Han L; Wang R; Wang Y; Gao S; Yuan Y
    J Nanobiotechnology; 2021 Feb; 19(1):58. PubMed ID: 33632231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy.
    Cheng WJ; Chen LC; Ho HO; Lin HL; Sheu MT
    Int J Nanomedicine; 2018; 13():7079-7094. PubMed ID: 30464460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical self-uncloaking CRISPR-Cas13a-customized RNA nanococoons for spatial-controlled genome editing and precise cancer therapy.
    Fan N; Bian X; Li M; Chen J; Wu H; Peng Q; Bai H; Cheng W; Kong L; Ding S; Li S; Cheng W
    Sci Adv; 2022 May; 8(20):eabn7382. PubMed ID: 35584220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal theranostic CRISPR/Cas13a RNA-editing system for glioma.
    Wu Y; Wang Y; Zhou J; Wang J; Zhan Q; Wang Q; Yang E; Jin W; Tong F; Zhao J; Hong B; Liu J; Kang C
    Theranostics; 2023; 13(15):5305-5321. PubMed ID: 37908718
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.