These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31709682)
1. A Micropillar-Assisted Versatile Strategy for Highly Sensitive and Efficient Triboelectric Energy Generation under In-Plane Stimuli. Chun S; Pang C; Cho SB Adv Mater; 2020 Jan; 32(2):e1905539. PubMed ID: 31709682 [TBL] [Abstract][Full Text] [Related]
2. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
3. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. Chen J; Yang J; Guo H; Li Z; Zheng L; Su Y; Wen Z; Fan X; Wang ZL ACS Nano; 2015 Dec; 9(12):12334-43. PubMed ID: 26529374 [TBL] [Abstract][Full Text] [Related]
4. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range. Yong H; Chung J; Choi D; Jung D; Cho M; Lee S Sci Rep; 2016 Sep; 6():33977. PubMed ID: 27653976 [TBL] [Abstract][Full Text] [Related]
5. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007 [TBL] [Abstract][Full Text] [Related]
6. Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple "High-Entropy" Kinetic Energies. Gang X; Guo ZH; Cong Z; Wang J; Chang C; Pan C; Pu X; Wang ZL ACS Appl Mater Interfaces; 2021 May; 13(17):20145-20152. PubMed ID: 33878260 [TBL] [Abstract][Full Text] [Related]
7. Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States. Li S; Wang S; Zi Y; Wen Z; Lin L; Zhang G; Wang ZL ACS Nano; 2015 Jul; 9(7):7479-87. PubMed ID: 26098784 [TBL] [Abstract][Full Text] [Related]
8. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. Cheng G; Lin ZH; Du ZL; Wang ZL ACS Nano; 2014 Feb; 8(2):1932-9. PubMed ID: 24467273 [TBL] [Abstract][Full Text] [Related]
9. Omnidirectional Triboelectric Nanogenerator Operated by Weak Wind Towards a Self-Powered Anemoscope. Zaw NYW; Roh H; Kim I; Goh TS; Kim D Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295213 [TBL] [Abstract][Full Text] [Related]
10. Super-Durable and Highly Efficient Electrostatic Induced Nanogenerator Circulation Network Initially Charged by a Triboelectric Nanogenerator for Harvesting Environmental Energy. Rui P; Zhang W; Wang P ACS Nano; 2021 Apr; 15(4):6949-6960. PubMed ID: 33784088 [TBL] [Abstract][Full Text] [Related]
11. Module-Type Triboelectric Nanogenerators Capable of Harvesting Power from a Variety of Mechanical Energy Sources. Shin J; Ji S; Yoon J; Park J Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577687 [TBL] [Abstract][Full Text] [Related]
16. Development of the Triboelectric Nanogenerator Using a Metal-to-Metal Imprinting Process for Improved Electrical Output. La M; Choi JH; Choi JY; Hwang TY; Kang J; Choi D Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715050 [TBL] [Abstract][Full Text] [Related]
17. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications. Zhang Z; Chen Y; Debeli DK; Guo JS ACS Appl Mater Interfaces; 2018 Apr; 10(15):13082-13091. PubMed ID: 29589430 [TBL] [Abstract][Full Text] [Related]
18. Eco-Friendly Keratin-Based Additives in the Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. Joo S; Kim JH; Lee CE; Kang J; Seo S; Kim JH; Song YK ACS Appl Bio Mater; 2022 Dec; 5(12):5706-5715. PubMed ID: 36473275 [TBL] [Abstract][Full Text] [Related]
19. Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. Zheng H; Zi Y; He X; Guo H; Lai YC; Wang J; Zhang SL; Wu C; Cheng G; Wang ZL ACS Appl Mater Interfaces; 2018 May; 10(17):14708-14715. PubMed ID: 29659250 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy. Gu GQ; Han CB; Tian JJ; Lu CX; He C; Jiang T; Li Z; Wang ZL ACS Appl Mater Interfaces; 2017 Apr; 9(13):11882-11888. PubMed ID: 28299934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]