These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 31709808)
1. Near-Infrared Optical Nanosensors for Continuous Detection of Glucose. Le LV; Chendke GS; Gamsey S; Wisniewski N; Desai TA J Diabetes Sci Technol; 2020 Mar; 14(2):204-211. PubMed ID: 31709808 [TBL] [Abstract][Full Text] [Related]
2. Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics. Gamsey S; Suri JT; Wessling RA; Singaram B Langmuir; 2006 Oct; 22(21):9067-74. PubMed ID: 17014156 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of pyranine derivatives in boronic acid based saccharide sensing: significance of charge interaction between dye and quencher in solution and hydrogel. Cappuccio FE; Suri JT; Cordes DB; Wessling RA; Singaram B J Fluoresc; 2004 Sep; 14(5):521-33. PubMed ID: 15617260 [TBL] [Abstract][Full Text] [Related]
10. The design and development of fluorescent nano-optodes for in vivo glucose monitoring. Balaconis MK; Billingsley K; Dubach MJ; Cash KJ; Clark HA J Diabetes Sci Technol; 2011 Jan; 5(1):68-75. PubMed ID: 21303627 [TBL] [Abstract][Full Text] [Related]
11. A study of boronic acid based fluorescent glucose sensors. Kawanishi T; Romey MA; Zhu PC; Holody MZ; Shinkai S J Fluoresc; 2004 Sep; 14(5):499-512. PubMed ID: 15617258 [TBL] [Abstract][Full Text] [Related]
13. In Vitro Sugar Interference Testing With Amperometric Glucose Oxidase Sensors. Boehm R; Donovan J; Sheth D; Durfor A; Roberts J; Isayeva I J Diabetes Sci Technol; 2019 Jan; 13(1):82-95. PubMed ID: 30073864 [TBL] [Abstract][Full Text] [Related]
14. Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes. Mortellaro M; DeHennis A Biosens Bioelectron; 2014 Nov; 61():227-31. PubMed ID: 24906080 [TBL] [Abstract][Full Text] [Related]
15. Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with NIR monitoring and medical features. Srichan C; Srichan W; Danvirutai P; Ritsongmuang C; Sharma A; Anutrakulchai S Sci Rep; 2022 Feb; 12(1):1769. PubMed ID: 35110583 [TBL] [Abstract][Full Text] [Related]
16. Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. Yum K; McNicholas TP; Mu B; Strano MS J Diabetes Sci Technol; 2013 Jan; 7(1):72-87. PubMed ID: 23439162 [TBL] [Abstract][Full Text] [Related]
18. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors. Sun H; Almdal K; Andresen TL Chem Commun (Camb); 2011 May; 47(18):5268-70. PubMed ID: 21451849 [TBL] [Abstract][Full Text] [Related]
19. The interaction of boronic acid-substituted viologens with pyranine: the effects of quencher charge on fluorescence quenching and glucose response. Cordes DB; Gamsey S; Sharrett Z; Miller A; Thoniyot P; Wessling RA; Singaram B Langmuir; 2005 Jul; 21(14):6540-7. PubMed ID: 15982064 [TBL] [Abstract][Full Text] [Related]
20. Overview of fluorescence glucose sensing: a technology with a bright future. Klonoff DC J Diabetes Sci Technol; 2012 Nov; 6(6):1242-50. PubMed ID: 23294768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]