These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Kolwicz SC; Olson DP; Marney LC; Garcia-Menendez L; Synovec RE; Tian R Circ Res; 2012 Aug; 111(6):728-38. PubMed ID: 22730442 [TBL] [Abstract][Full Text] [Related]
3. Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. Choi YS; de Mattos AB; Shao D; Li T; Nabben M; Kim M; Wang W; Tian R; Kolwicz SC J Mol Cell Cardiol; 2016 Nov; 100():64-71. PubMed ID: 27693463 [TBL] [Abstract][Full Text] [Related]
5. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload. Calamaras TD; Baumgartner RA; Aronovitz MJ; McLaughlin AL; Tam K; Richards DA; Cooper CW; Li N; Baur WE; Qiao X; Wang GR; Davis RJ; Kapur NK; Karas RH; Blanton RM Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H145-H159. PubMed ID: 30362822 [TBL] [Abstract][Full Text] [Related]
6. Metabolic impairment in response to early induction of C/EBPβ leads to compromised cardiac function during pathological hypertrophy. Banerjee D; Datta Chaudhuri R; Niyogi S; Roy Chowdhuri S; Poddar Sarkar M; Chatterjee R; Chakrabarti P; Sarkar S J Mol Cell Cardiol; 2020 Feb; 139():148-163. PubMed ID: 31958467 [TBL] [Abstract][Full Text] [Related]
7. Increasing Fatty Acid Oxidation Prevents High-Fat Diet-Induced Cardiomyopathy Through Regulating Parkin-Mediated Mitophagy. Shao D; Kolwicz SC; Wang P; Roe ND; Villet O; Nishi K; Hsu YA; Flint GV; Caudal A; Wang W; Regnier M; Tian R Circulation; 2020 Sep; 142(10):983-997. PubMed ID: 32597196 [TBL] [Abstract][Full Text] [Related]
8. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice. Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Interventions to Prevent Hypertrophy-Induced Alterations in Contractile Properties In Vitro. Geraets IME; Coumans WA; Strzelecka A; Schönleitner P; Antoons G; Schianchi F; Willemars MMA; Kapsokalyvas D; Glatz JFC; Luiken JJFP; Nabben M Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807195 [TBL] [Abstract][Full Text] [Related]
10. Reactivation of fatty acid oxidation by medium chain fatty acid prevents myocyte hypertrophy in H9c2 cell line. Ismael S; Nair RR Mol Cell Biochem; 2021 Jan; 476(1):483-491. PubMed ID: 33000353 [TBL] [Abstract][Full Text] [Related]
11. Atorvastatin ameliorates lipid overload-induced mitochondrial dysfunction and myocardial hypertrophy by decreasing fatty acid oxidation through inactivation of the p-STAT3/CPT1 pathway. Zheng P; Wu H; Gu Y; Li L; Hu R; Ma W; Bian Z; Liu N; Yang D; Chen X Biomed Pharmacother; 2023 Jan; 157():114024. PubMed ID: 36402030 [TBL] [Abstract][Full Text] [Related]
12. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Yan J; Young ME; Cui L; Lopaschuk GD; Liao R; Tian R Circulation; 2009 Jun; 119(21):2818-28. PubMed ID: 19451348 [TBL] [Abstract][Full Text] [Related]
13. Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1. Lister K; Autelitano DJ; Jenkins A; Hannan RD; Sheppard KE Cardiovasc Res; 2006 Jun; 70(3):555-65. PubMed ID: 16533503 [TBL] [Abstract][Full Text] [Related]
15. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress. Huang J; Xu L; Huang Q; Luo J; Liu P; Chen S; Yuan X; Lu Y; Wang P; Zhou S J Cell Mol Med; 2015 Jul; 19(7):1672-88. PubMed ID: 25753319 [TBL] [Abstract][Full Text] [Related]
16. HMG-CoA reductase inhibitor fluvastatin prevents angiotensin II-induced cardiac hypertrophy via Rho kinase and inhibition of cyclin D1. Morikawa-Futamatsu K; Adachi S; Maejima Y; Tamamori-Adachi M; Suzuki J; Kitajima S; Ito H; Isobe M Life Sci; 2006 Aug; 79(14):1380-90. PubMed ID: 16712874 [TBL] [Abstract][Full Text] [Related]
17. Aspartate transporter expression and activity in hypertrophic rat heart and ischaemia-reperfusion injury. King N; Lin H; McGivan JD; Suleiman MS J Physiol; 2004 May; 556(Pt 3):849-58. PubMed ID: 14766933 [TBL] [Abstract][Full Text] [Related]
18. The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. Moellmann J; Mann PA; Kappel BA; Kahles F; Klinkhammer BM; Boor P; Kramann R; Ghesquiere B; Lebherz C; Marx N; Lehrke M Diabetes Obes Metab; 2022 Nov; 24(11):2263-2272. PubMed ID: 35801343 [TBL] [Abstract][Full Text] [Related]
19. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Li Y; Xiong Z; Yan W; Gao E; Cheng H; Wu G; Liu Y; Zhang L; Li C; Wang S; Fan M; Zhao H; Zhang F; Tao L Theranostics; 2020; 10(12):5623-5640. PubMed ID: 32373236 [No Abstract] [Full Text] [Related]
20. Mesenchymal Stem Cells and Cardiomyocytes Interplay to Prevent Myocardial Hypertrophy. Cai B; Tan X; Zhang Y; Li X; Wang X; Zhu J; Wang Y; Yang F; Wang B; Liu Y; Xu C; Pan Z; Wang N; Yang B; Lu Y Stem Cells Transl Med; 2015 Dec; 4(12):1425-35. PubMed ID: 26586774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]