BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31709913)

  • 1. Properties, toxicity and current applications of the biolarvicide spinosad.
    Santos VSV; Pereira BB
    J Toxicol Environ Health B Crit Rev; 2020; 23(1):13-26. PubMed ID: 31709913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory evaluation of the bioinsecticide Spinosad for mosquito control.
    Romi R; Proietti S; Di Luca M; Cristofaro M
    J Am Mosq Control Assoc; 2006 Mar; 22(1):93-6. PubMed ID: 16646328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinosad toxicity to pollinators and associated risk.
    Mayes MA; Thompson GD; Husband B; Miles MM
    Rev Environ Contam Toxicol; 2003; 179():37-71. PubMed ID: 15366583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of toxicity and environmental safety in use of spinosad to rationalize control strategies against Aedes aegypti.
    Santos VSV; Silva CE; Oliveira CM; de Morais CR; Limongi JE; Pereira BB
    Chemosphere; 2019 Jul; 226():166-172. PubMed ID: 30927668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil.
    Dos Santos Dias L; Macoris ML; Andrighetti MT; Otrera VC; Dias AD; Bauzer LG; Rodovalho CM; Martins AJ; Lima JB
    PLoS One; 2017; 12(3):e0173689. PubMed ID: 28301568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae.
    Darriet F; Corbel V
    J Med Entomol; 2006 Nov; 43(6):1190-4. PubMed ID: 17162952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of spinosad, a naturally derived insect control agent, to the honeybee (Apis melifera).
    Miles M; Mayes M; Dutton R
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(3):611-6. PubMed ID: 12696428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control.
    Lawler SP
    Ecotoxicol Environ Saf; 2017 May; 139():335-343. PubMed ID: 28187397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic toxicity of dillapiol and spinosad larvicides in somatic cells of Drosophila melanogaster.
    Aciole EH; Guimarães NN; Silva AS; Amorim EM; Nunomura SM; Garcia AC; Cunha KS; Rohde C
    Pest Manag Sci; 2014 Apr; 70(4):559-65. PubMed ID: 23650150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory and field evaluation of spinosad, a biorational natural product, against larvae of Culex mosquitoes.
    Jiang Y; Mulla MS
    J Am Mosq Control Assoc; 2009 Dec; 25(4):456-66. PubMed ID: 20099593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larvicidal and pupicidal activity of spinosad against the malarial vector Anopheles stephensi.
    Prabhu K; Murugan K; Nareshkumar A; Bragadeeswaran S
    Asian Pac J Trop Med; 2011 Aug; 4(8):610-3. PubMed ID: 21914537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson).
    Morandin LA; Winston ML; Franklin MT; Abbott VA
    Pest Manag Sci; 2005 Jul; 61(7):619-26. PubMed ID: 15880684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti.
    Antonio GE; Sánchez D; Williams T; Marina CF
    Pest Manag Sci; 2009 Mar; 65(3):323-6. PubMed ID: 19051219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Bacillus thuringiensis israelensis and spinosad on adult emergence of the non-biting midges Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in coastal wetlands.
    Duchet C; Franquet E; Lagadic L; Lagneau C
    Ecotoxicol Environ Saf; 2015 May; 115():272-8. PubMed ID: 25728359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights on the effects of spinosad on the development of Helicoverpa armigera.
    Yao S; Yang Y; Xue Y; Zhao W; Liu X; Du M; Yin X; Guan R; Wei J; An S
    Ecotoxicol Environ Saf; 2021 Sep; 221():112452. PubMed ID: 34198186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids.
    Sparks TC; Crouse GD; Durst G
    Pest Manag Sci; 2001 Oct; 57(10):896-905. PubMed ID: 11695182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of toxicity and genotoxic effects of spinosad and deltamethrin in Drosophila melanogaster and Bactrocera oleae.
    Akmoutsou P; Mademtzoglou D; Nakou I; Onoufriadis A; Papadopoulou X; Kounatidis I; Frantzios G; Papadakis G; Vasiliadis K; Papadopoulos NT; Mavragani-Tsipidou P
    Pest Manag Sci; 2011 Dec; 67(12):1534-40. PubMed ID: 21626654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of spinosad on stored-tobacco insects and persistence on cured tobacco stripst.
    Blanc MP; Panighini C; Gadani F; Rossi L
    Pest Manag Sci; 2004 Nov; 60(11):1091-8. PubMed ID: 15532683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The macrocyclic lactone "spinosad," a promising insecticide for tsetse fly control.
    De Deken R; Speybroeck N; Gillain G; Sigue H; Batawi K; Van Den Bossche P
    J Med Entomol; 2004 Sep; 41(5):814-8. PubMed ID: 15535607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotoxic and mutagenic assessment of spinosad using bioassays with Tradescantia pallida and Drosophila melanogaster.
    Mendonça TP; Davi de Aquino J; Junio da Silva W; Mendes DR; Campos CF; Vieira JS; Barbosa NP; Carvalho Naves MP; Olegário de Campos Júnior E; Alves de Rezende AA; Spanó MA; Bonetti AM; Vieira Santos VS; Pereira BB; Resende de Morais C
    Chemosphere; 2019 May; 222():503-510. PubMed ID: 30721808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.