These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31709913)

  • 41. Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations.
    Christen V; Krebs J; Bünter I; Fent K
    J Hazard Mater; 2019 Oct; 378():120736. PubMed ID: 31202068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa.
    Waldron C; Matsushima P; Rosteck PR; Broughton MC; Turner J; Madduri K; Crawford KP; Merlo DJ; Baltz RH
    Chem Biol; 2001 May; 8(5):487-99. PubMed ID: 11358695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Field evaluation in Thailand of spinosad, a larvicide derived from Saccharopolyspora spinosa (Actinomycetales) against Aedes aegypti (L.) larvae.
    Thavara U; Tawatsin A; Asavadachanukorn P; Mulla MS
    Southeast Asian J Trop Med Public Health; 2009 Mar; 40(2):235-42. PubMed ID: 19323007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficacy of spinosad in control of larval Culex tarsalis and chironomid midges, and its nontarget effects.
    Lawler SP; Dritz DA
    J Am Mosq Control Assoc; 2013 Dec; 29(4):352-7. PubMed ID: 24551968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spinosad application in an apple orchard affects both the abundance of the spider Araneus diadematus and its web construction behaviour.
    Mazzia C; Capowiez Y; Marliac G; Josselin D; Pasquet A
    Ecotoxicology; 2020 May; 29(4):389-397. PubMed ID: 32274624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Level of Spinosad Production in the Heterologous Host Saccharopolyspora erythraea.
    Huang J; Yu Z; Li MH; Wang JD; Bai H; Zhou J; Zheng YG
    Appl Environ Microbiol; 2016 Sep; 82(18):5603-11. PubMed ID: 27401975
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lethal and Demographic Impact of Chlorpyrifos and Spinosad on the Ectoparasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae).
    Mahdavi V; Saber M; Rafiee-Dastjerdi H; Kamita SG
    Neotrop Entomol; 2015 Dec; 44(6):626-33. PubMed ID: 26280986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Susceptibility status of different life stages of Tribolium castaneum Herbst (Col: Tenebrionidae) to spinosad.
    Yousefnezhad-Irani R; Asghar PA
    Pak J Biol Sci; 2007 Sep; 10(17):2950-4. PubMed ID: 19090206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Residual control and lethal concentrations of GF-120 (spinosad) for Anastrepha spp. (Diptera: Tephritidae).
    Flores S; Gomez LE; Montoya P
    J Econ Entomol; 2011 Dec; 104(6):1885-91. PubMed ID: 22299349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toxicity, persistence, and efficacy of spinosad, chlorfenapyr, and thiamethoxam on eggplant when applied against the eggplant flea beetle (Coleoptera: Chrysomelidae).
    McLeod P; Diaz FJ; Johnson DT
    J Econ Entomol; 2002 Apr; 95(2):331-5. PubMed ID: 12020009
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of contact toxicity and wheat condition to mortality of stored-product insects exposed to spinosad.
    Toews MD; Subramanyam B
    Pest Manag Sci; 2003 May; 59(5):538-44. PubMed ID: 12741521
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes.
    Tao H; Zhang Y; Deng Z; Liu T
    Biotechnol J; 2019 Jan; 14(1):e1700769. PubMed ID: 29897659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spinosad, a new tool for insect control in vegetables cultivated in greenhouses.
    Schoonejans T; Van der Staaij M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):375-86. PubMed ID: 12425058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Spinosad-Based Formulation Reduces the Survival and Alters the Behavior of the Stingless Bee Plebeia lucii.
    Marques RD; Lima MAP; Marques RD; Bernardes RC
    Neotrop Entomol; 2020 Aug; 49(4):578-585. PubMed ID: 32347525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae.
    Bond JG; Marina CF; Williams T
    Med Vet Entomol; 2004 Mar; 18(1):50-6. PubMed ID: 15009445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Demographic changes in Daphnia pulex (Leydig) after exposure to the insecticides spinosad and diazinon.
    Stark JD; Vargas RI
    Ecotoxicol Environ Saf; 2003 Nov; 56(3):334-8. PubMed ID: 14575672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lethal and sublethal effects of the natural and healthy spinosad-based formulation Tracer™ on tadpoles of two neotropical species.
    Bahl MF; Brodeur JC; Costa CS; D'Andrea MF; Sansiñena JA; Marino DJ; Natale GS
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13524-13535. PubMed ID: 33185796
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Responses of Corcyra cephalonica (Stainton) to pirimiphos-methyl, spinosad, and combinations of pirimiphos-methyl and synergized pyrethrins.
    Huang F; Subramanyam B
    Pest Manag Sci; 2004 Feb; 60(2):191-8. PubMed ID: 14971688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of insecticides and Plutella xylostella (Lepidoptera: Plutellidae) genotype on a predator and parasitoid and implications for the evolution of insecticide resistance.
    Liu X; Chen M; Collins HL; Onstad D; Roush R; Zhang Q; Shelton AM
    J Econ Entomol; 2012 Apr; 105(2):354-62. PubMed ID: 22606803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low toxicity and high efficacy in use of novel approaches to control
    Santos VSV; Pereira BB
    J Toxicol Environ Health B Crit Rev; 2020 Aug; 23(6):243-254. PubMed ID: 32515686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.