These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 31710075)
1. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Hasan MM; Manavalan B; Khatun MS; Kurata H Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075 [TBL] [Abstract][Full Text] [Related]
2. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites. Wang X; Yan R; Li J; Song J Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688 [TBL] [Abstract][Full Text] [Related]
3. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169 [TBL] [Abstract][Full Text] [Related]
4. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information. Hasan MM; Rashid MM; Khatun MS; Kurata H Sci Rep; 2019 Jun; 9(1):8258. PubMed ID: 31164681 [TBL] [Abstract][Full Text] [Related]
5. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information. Hasan MM; Guo D; Kurata H Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628 [TBL] [Abstract][Full Text] [Related]
6. An efficient support vector machine approach for identifying protein S-nitrosylation sites. Li YX; Shao YH; Jing L; Deng NY Protein Pept Lett; 2011 Jun; 18(6):573-87. PubMed ID: 21271979 [TBL] [Abstract][Full Text] [Related]
7. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue. Hasan MA; Li J; Ahmad S; Molla MK Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168 [TBL] [Abstract][Full Text] [Related]
8. Identification of S-nitrosylation sites based on multiple features combination. Li T; Song R; Yin Q; Gao M; Chen Y Sci Rep; 2019 Feb; 9(1):3098. PubMed ID: 30816267 [TBL] [Abstract][Full Text] [Related]
9. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites. Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050 [TBL] [Abstract][Full Text] [Related]
10. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition. Jia C; Lin X; Wang Z Int J Mol Sci; 2014 Jun; 15(6):10410-23. PubMed ID: 24918295 [TBL] [Abstract][Full Text] [Related]
11. PPSNO: A Feature-Rich SNO Sites Predictor by Stacking Ensemble Strategy from Protein Sequence-Derived Information. Zhu L; Wang L; Yang Z; Xu P; Yang S Interdiscip Sci; 2024 Mar; 16(1):192-217. PubMed ID: 38206557 [TBL] [Abstract][Full Text] [Related]
12. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. Xue Y; Liu Z; Gao X; Jin C; Wen L; Yao X; Ren J PLoS One; 2010 Jun; 5(6):e11290. PubMed ID: 20585580 [TBL] [Abstract][Full Text] [Related]
13. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity. Lee TY; Chen YJ; Lu TC; Huang HD; Chen YJ PLoS One; 2011; 6(7):e21849. PubMed ID: 21789187 [TBL] [Abstract][Full Text] [Related]
14. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. Xu Y; Ding J; Wu LY; Chou KC PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062 [TBL] [Abstract][Full Text] [Related]
15. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features. Hasan MM; Kurata H PLoS One; 2018; 13(10):e0200283. PubMed ID: 30312302 [TBL] [Abstract][Full Text] [Related]
16. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features. Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121 [TBL] [Abstract][Full Text] [Related]
17. PUP-Fuse: Prediction of Protein Pupylation Sites by Integrating Multiple Sequence Representations. Auliah FN; Nilamyani AN; Shoombuatong W; Alam MA; Hasan MM; Kurata H Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672741 [TBL] [Abstract][Full Text] [Related]
18. Prediction of posttranslational modification sites from amino acid sequences with kernel methods. Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233 [TBL] [Abstract][Full Text] [Related]
19. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites. Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243 [TBL] [Abstract][Full Text] [Related]
20. IRC-Fuse: improved and robust prediction of redox-sensitive cysteine by fusing of multiple feature representations. Hasan MM; Alam MA; Shoombuatong W; Kurata H J Comput Aided Mol Des; 2021 Mar; 35(3):315-323. PubMed ID: 33392948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]