BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31710234)

  • 1. Direct and Label-Free Detection of MicroRNA Cancer Biomarkers using SERS-Based Plasmonic Coupling Interference (PCI) Nanoprobes.
    Wang HN; Crawford BM; Norton SJ; Vo-Dinh T
    J Phys Chem B; 2019 Dec; 123(48):10245-10251. PubMed ID: 31710234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection.
    Wang HN; Vo-Dinh T
    Small; 2011 Nov; 7(21):3067-74. PubMed ID: 21913327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar.
    Kim WH; Lee JU; Song S; Kim S; Choi YJ; Sim SJ
    Analyst; 2019 Feb; 144(5):1768-1776. PubMed ID: 30672519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A SERS approach for rapid detection of microRNA-17 in the picomolar range.
    Schechinger M; Marks H; Mabbott S; Choudhury M; Cote' G
    Analyst; 2019 Jul; 144(13):4033-4044. PubMed ID: 31143920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars.
    Lee JU; Kim WH; Lee HS; Park KH; Sim SJ
    Small; 2019 Apr; 15(17):e1804968. PubMed ID: 30828996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.
    Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R
    Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Surface-Enhanced Raman Spectroscopy Detection of Multiplexed MicroRNA Biomarkers.
    Zhou W; Tian YF; Yin BC; Ye BC
    Anal Chem; 2017 Jun; 89(11):6120-6128. PubMed ID: 28488851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals.
    Zhang N; Ye S; Wang Z; Li R; Wang M
    ACS Sens; 2019 Apr; 4(4):924-930. PubMed ID: 30924337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicolor Gold-Silver Nano-Mushrooms as Ready-to-Use SERS Probes for Ultrasensitive and Multiplex DNA/miRNA Detection.
    Su J; Wang D; Nörbel L; Shen J; Zhao Z; Dou Y; Peng T; Shi J; Mathur S; Fan C; Song S
    Anal Chem; 2017 Feb; 89(4):2531-2538. PubMed ID: 28192956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer.
    Kim WH; Lee JU; Jeon MJ; Park KH; Sim SJ
    Biosens Bioelectron; 2022 Jun; 205():114116. PubMed ID: 35235898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer Diagnosis through SERS and Other Related Techniques.
    Blanco-Formoso M; Alvarez-Puebla RA
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32214017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly.
    Chen J; Wu Y; Fu C; Cao H; Tan X; Shi W; Wu Z
    Biosens Bioelectron; 2019 Oct; 143():111619. PubMed ID: 31454694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics.
    Wang HN; Fales AM; Zaas AK; Woods CW; Burke T; Ginsburg GS; Vo-Dinh T
    Anal Chim Acta; 2013 Jul; 786():153-8. PubMed ID: 23790305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants.
    Crawford BM; Strobbia P; Wang HN; Zentella R; Boyanov MI; Pei ZM; Sun TP; Kemner KM; Vo-Dinh T
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7743-7754. PubMed ID: 30694650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition-Tunable Hollow Au/Ag SERS Nanoprobes Coupled with Target-Catalyzed Hairpin Assembly for Triple-Amplification Detection of miRNA.
    Sun Y; Li T
    Anal Chem; 2018 Oct; 90(19):11614-11621. PubMed ID: 30175580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene.
    Culha M; Stokes D; Vo-Dinh T
    Expert Rev Mol Diagn; 2003 Sep; 3(5):669-75. PubMed ID: 14510186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction Kinetics-Mediated Control over Silver Nanogap Shells as Surface-Enhanced Raman Scattering Nanoprobes for Detection of Alzheimer's Disease Biomarkers.
    Yang JK; Hwang IJ; Cha MG; Kim HI; Yim D; Jeong DH; Lee YS; Kim JH
    Small; 2019 May; 15(19):e1900613. PubMed ID: 30957959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miRNA probe integrated biosensor platform using bimetallic nanostars for amplification-free multiplexed detection of circulating colorectal cancer biomarkers in clinical samples.
    Canning AJ; Chen X; Li JQ; Jeck WR; Wang HN; Vo-Dinh T
    Biosens Bioelectron; 2023 Jan; 220():114855. PubMed ID: 36332335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy.
    Liu R; Wang Q; Li Q; Yang X; Wang K; Nie W
    Biosens Bioelectron; 2017 Jan; 87():433-438. PubMed ID: 27589408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.