BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31710395)

  • 1. Balancing cost and benefit: How E. coli cleverly averts disulfide stress caused by cystine.
    Downs DM
    Mol Microbiol; 2020 Jan; 113(1):1-3. PubMed ID: 31710395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter.
    Korshunov S; Imlay KRC; Imlay JA
    Mol Microbiol; 2020 Jan; 113(1):22-39. PubMed ID: 31612555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Death by Cystine: an Adverse Emergent Property from a Beneficial Series of Reactions.
    Reitzer L
    J Bacteriol; 2015 Dec; 197(23):3626-8. PubMed ID: 26369582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli.
    Chonoles Imlay KR; Korshunov S; Imlay JA
    J Bacteriol; 2015 Dec; 197(23):3629-44. PubMed ID: 26350134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli K-12 Lacks a High-Affinity Assimilatory Cysteine Importer.
    Zhou Y; Imlay JA
    mBio; 2020 Jun; 11(3):. PubMed ID: 32518189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of the in vivo metabolism of cystine in Escherichia coli using stable isotopes.
    White RH
    Biomed Mass Spectrom; 1983 Dec; 10(12):660-4. PubMed ID: 6423009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol.
    Höög JO; Jörnvall H; Holmgren A; Carlquist M; Persson M
    Eur J Biochem; 1983 Oct; 136(1):223-32. PubMed ID: 6352262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of cystine in the cytotoxic response of Escherichia coli cells exposed to hydrogen peroxide.
    Cantoni O; Brandi G; Albano A; Cattabeni F
    Free Radic Res; 1995 Mar; 22(3):275-83. PubMed ID: 7757202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of reactive cysteine-containing 2-nitrobenzoate nitroreductase (NbaA) and its mutants alters the sensitivity of Escherichia coli to reactive oxygen species by reprogramming a regulatory network of disulfide-bonded proteins.
    Kim YH; Yu MH
    J Proteome Res; 2012 Jun; 11(6):3219-30. PubMed ID: 22564194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide bond-dependent mechanism of protection against oxidative stress in pyruvate-ferredoxin oxidoreductase of anaerobic Desulfovibrio bacteria.
    Vita N; Hatchikian EC; Nouailler M; Dolla A; Pieulle L
    Biochemistry; 2008 Jan; 47(3):957-64. PubMed ID: 18161989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase.
    Li Calzi M; Poole LB
    Biochemistry; 1997 Oct; 36(43):13357-64. PubMed ID: 9341228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the metabolic origin of the sulfur atom in thiamin of Escherichia coli by mass spectrometry.
    DeMoll E; Shive W
    Biochem Biophys Res Commun; 1985 Oct; 132(1):217-22. PubMed ID: 3904745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction.
    Poole LB
    Biochemistry; 1996 Jan; 35(1):65-75. PubMed ID: 8555199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide bond formation system in Escherichia coli.
    Inaba K
    J Biochem; 2009 Nov; 146(5):591-7. PubMed ID: 19567379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of translation efficiency in an Escherichia coli cell-free protein system using cysteine.
    Shingaki T; Nimura N
    Protein Expr Purif; 2011 Jun; 77(2):193-7. PubMed ID: 21296158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli.
    Hondorp ER; Matthews RG
    PLoS Biol; 2004 Nov; 2(11):e336. PubMed ID: 15502870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two cysteine-rich head domains of minicollagen from Hydra nematocysts differ in their cystine framework and overall fold despite an identical cysteine sequence pattern.
    Milbradt AG; Boulegue C; Moroder L; Renner C
    J Mol Biol; 2005 Dec; 354(3):591-600. PubMed ID: 16257007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of L-[sulfane-34S]thiocystine by Escherichia coli.
    White RH
    Biochemistry; 1982 Aug; 21(18):4271-5. PubMed ID: 6812623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.