BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31710622)

  • 1. Uncovering the subtype-specific temporal order of cancer pathway dysregulation.
    Khakabimamaghani S; Ding D; Snow O; Ester M
    PLoS Comput Biol; 2019 Nov; 15(11):e1007451. PubMed ID: 31710622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous inference of cancer pathways and tumor progression from cross-sectional mutation data.
    Raphael BJ; Vandin F
    J Comput Biol; 2015 Jun; 22(6):510-27. PubMed ID: 25785493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway-based personalized analysis of cancer.
    Drier Y; Sheffer M; Domany E
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6388-93. PubMed ID: 23547110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classifying tumors by supervised network propagation.
    Zhang W; Ma J; Ideker T
    Bioinformatics; 2018 Jul; 34(13):i484-i493. PubMed ID: 29949979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PathScore: a web tool for identifying altered pathways in cancer data.
    Gaffney SG; Townsend JP
    Bioinformatics; 2016 Dec; 32(23):3688-3690. PubMed ID: 27503224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of driver pathways in cancer based on combinatorial patterns of somatic gene mutations.
    Li HT; Zhang J; Xia J; Zheng CH
    Neoplasma; 2016; 63(1):57-63. PubMed ID: 26639234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of rare cancer driver mutations by network reconstruction.
    Torkamani A; Schork NJ
    Genome Res; 2009 Sep; 19(9):1570-8. PubMed ID: 19574499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IndividualizedPath: identifying genetic alterations contributing to the dysfunctional pathways in glioblastoma individuals.
    Ping Y; Zhang H; Deng Y; Wang L; Zhao H; Pang L; Fan H; Xu C; Li F; Zhang Y; Gong Y; Xiao Y; Li X
    Mol Biosyst; 2014 Aug; 10(8):2031-42. PubMed ID: 24911613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway-based deep clustering for molecular subtyping of cancer.
    Mallavarapu T; Hao J; Kim Y; Oh JH; Kang M
    Methods; 2020 Feb; 173():24-31. PubMed ID: 31247294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous identification of multiple driver pathways in cancer.
    Leiserson MD; Blokh D; Sharan R; Raphael BJ
    PLoS Comput Biol; 2013; 9(5):e1003054. PubMed ID: 23717195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression.
    Liu Y; Gu Q; Hou JP; Han J; Ma J
    BMC Bioinformatics; 2014 Feb; 15():37. PubMed ID: 24491042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FREQUENT SUBGRAPH MINING OF PERSONALIZED SIGNALING PATHWAY NETWORKS GROUPS PATIENTS WITH FREQUENTLY DYSREGULATED DISEASE PATHWAYS AND PREDICTS PROGNOSIS.
    Durmaz A; Henderson TAD; Brubaker D; Bebek G
    Pac Symp Biocomput; 2017; 22():402-413. PubMed ID: 27896993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-Based Method for Inferring Cancer Progression at the Pathway Level from Cross-Sectional Mutation Data.
    Wu H; Gao L; Kasabov NK
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1036-1044. PubMed ID: 26915128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of aberrant pathway and network activity from high-throughput data.
    Ochs MF; Karchin R; Ressom H; Gentleman R
    Pac Symp Biocomput; 2011; ():364-8. PubMed ID: 21121064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Co-Expression Analyses Allow the Identification of Critical Signalling Pathways Altered during Tumour Transformation and Progression.
    Savino A; Provero P; Poli V
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical analysis predicts imbalanced IDH1/2 expression associates with 2-HG-inactivating β-oxygenation pathway in colorectal cancer.
    Koseki J; Colvin H; Fukusumi T; Nishida N; Konno M; Kawamoto K; Tsunekuni K; Matsui H; Doki Y; Mori M; Ishii H
    Int J Oncol; 2015 Mar; 46(3):1181-91. PubMed ID: 25586680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LncSubpathway: a novel approach for identifying dysfunctional subpathways associated with risk lncRNAs by integrating lncRNA and mRNA expression profiles and pathway topologies.
    Xu Y; Li F; Wu T; Xu Y; Yang H; Dong Q; Zheng M; Shang D; Zhang C; Zhang Y; Li X
    Oncotarget; 2017 Feb; 8(9):15453-15469. PubMed ID: 28152521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.