BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31710628)

  • 1. Improvements in the learnability of smartphone haptic interfaces for visually impaired users.
    González-Cañete FJ; López Rodríguez JL; Galdón PM; Díaz-Estrella A
    PLoS One; 2019; 14(11):e0225053. PubMed ID: 31710628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Screen Exploration of Smartphones Using Haptic Icons for Visually Impaired Users.
    González-Cañete FJ; López-Rodríguez JL; Galdón PM; Diaz-Estrella A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing mobile phones for people with visual impairments through haptic icons: the effect of learning processes.
    Galdón PM; Madrid RI; De La Rubia-Cuestas EJ; Diaz-Estrella A; Gonzalez L
    Assist Technol; 2013; 25(2):80-7. PubMed ID: 23923690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do Congenitally Blind Individuals have Better Haptic Object Perception Compared to Blindfolded Sighted Individuals?
    Bhirud BG; Chandan LM; Chawla A
    Indian J Physiol Pharmacol; 2016; 60(3):230-4. PubMed ID: 29957910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haptic-2D: A new haptic test battery assessing the tactual abilities of sighted and visually impaired children and adolescents with two-dimensional raised materials.
    Mazella A; Albaret JM; Picard D
    Res Dev Disabil; 2016 Jan; 48():103-23. PubMed ID: 26551596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic-assistive technologies for audition and vision sensory disabilities.
    Sorgini F; Caliò R; Carrozza MC; Oddo CM
    Disabil Rehabil Assist Technol; 2018 May; 13(4):394-421. PubMed ID: 29017361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual Haptic Perception as an Educational Assistive Technology: A Case Study in Inclusive Education.
    Espinosa-Castaneda R; Medellin-Castillo HI
    IEEE Trans Haptics; 2021; 14(1):152-160. PubMed ID: 32746373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tactile Radar: experimenting a computer game with visually disabled.
    Kastrup V; Cassinelli A; Quérette P; Bergstrom N; Sampaio E
    Disabil Rehabil Assist Technol; 2018 Nov; 13(8):777-784. PubMed ID: 28920499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SwingBoard: introducing swipe based virtual keyboard for visually impaired and blind users.
    Ahmed I; Farrok O
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1482-1493. PubMed ID: 37098085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptic Feedback to Assist Blind People in Indoor Environment Using Vibration Patterns.
    Khusro S; Shah B; Khan I; Rahman S
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple Smartphone-Based Guiding System for Visually Impaired People.
    Lin BS; Lee CC; Chiang PY
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28608811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.
    Budrionis A; Plikynas D; Daniušis P; Indrulionis A
    Assist Technol; 2022 Mar; 34(2):178-194. PubMed ID: 32207640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LidSonic V2.0: A LiDAR and Deep-Learning-Based Green Assistive Edge Device to Enhance Mobility for the Visually Impaired.
    Busaeed S; Katib I; Albeshri A; Corchado JM; Yigitcanlar T; Mehmood R
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling visually impaired people to learn three-dimensional tactile graphics with a 3DOF haptic mouse.
    Memeo M; Jacono M; Sandini G; Brayda L
    J Neuroeng Rehabil; 2021 Sep; 18(1):146. PubMed ID: 34563218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Navigation and Augmented Reality System for Visually Impaired People.
    Lo Valvo A; Croce D; Garlisi D; Giuliano F; Giarré L; Tinnirello I
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visuo-haptic integration in object identification using novel objects.
    Desmarais G; Meade M; Wells T; Nadeau M
    Atten Percept Psychophys; 2017 Nov; 79(8):2478-2498. PubMed ID: 28744702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic perception of users with low vision and their needs in haptic-incorporated user interfaces.
    Kim HN; Smith-Jackson T; Terpenny J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):195-208. PubMed ID: 24749554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.