BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31710771)

  • 1. Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging.
    Almog IF; Chen FD; Senova S; Fomenko A; Gondard E; Sacher WD; Lozano AM; Poon JKS
    J Biophotonics; 2020 Feb; 13(2):e201960083. PubMed ID: 31710771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features.
    Lenz M; Krug R; Dillmann C; Stroop R; Gerhardt NC; Welp H; Schmieder K; Hofmann MR
    J Biomed Opt; 2018 Feb; 23(7):1-7. PubMed ID: 29484876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
    Wan S; Lee HC; Huang X; Xu T; Xu T; Zeng X; Zhang Z; Sheikine Y; Connolly JL; Fujimoto JG; Zhou C
    Med Image Anal; 2017 May; 38():104-116. PubMed ID: 28327449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of human brain tumor tissue by near-infrared laser coherence tomography.
    Böhringer HJ; Lankenau E; Stellmacher F; Reusche E; Hüttmann G; Giese A
    Acta Neurochir (Wien); 2009 May; 151(5):507-17; discussion 517. PubMed ID: 19343270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theranostic applications of optical coherence tomography in neurosurgery?
    Hartmann K; Stein KP; Neyazi B; Sandalcioglu IE
    Neurosurg Rev; 2022 Feb; 45(1):421-427. PubMed ID: 34398385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images.
    Pfister M; Stegmann H; Schützenberger K; Schäfer BJ; Hohenadl C; Schmetterer L; Gröschl M; Werkmeister RM
    Ann N Y Acad Sci; 2021 Aug; 1497(1):15-26. PubMed ID: 33638189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases.
    Möller J; Bartsch A; Lenz M; Tischoff I; Krug R; Welp H; Hofmann MR; Schmieder K; Miller D
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1517-1526. PubMed ID: 34053010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Construction of swept source optical coherence tomography imaging system for root canal endoscopy and application in diagnosis of root fractures].
    Qi LY; Chen C; Jiang L; Li JN; Liang YH
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Aug; 51(4):753-757. PubMed ID: 31420635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REAL-TIME FULL-DEPTH VISUALIZATION OF POSTERIOR OCULAR STRUCTURES: Comparison Between Full-Depth Imaging Spectral Domain Optical Coherence Tomography and Swept-Source Optical Coherence Tomography.
    Barteselli G; Bartsch DU; Weinreb RN; Camacho N; Nezgoda JT; Marvasti AH; Freeman WR
    Retina; 2016 Jun; 36(6):1153-61. PubMed ID: 26562563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endoscopic imaging of white matter fiber tracts using polarization-sensitive optical coherence tomography.
    DePaoli D; Côté DC; Bouma BE; Villiger M
    Neuroimage; 2022 Dec; 264():119755. PubMed ID: 36400379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.
    Gabr H; Chen X; Zevallos-Carrasco OM; Viehland C; Dandrige A; Sarin N; Mahmoud TH; Vajzovic L; Izatt JA; Toth CA
    Retina; 2018 Sep; 38 Suppl 1(Suppl 1):S110-S120. PubMed ID: 29324591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Akinetic swept-source optical coherence tomography based on a pulse-modulated active mode locking fiber laser for human retinal imaging.
    Lee HD; Kim GH; Shin JG; Lee B; Kim CS; Eom TJ
    Sci Rep; 2018 Dec; 8(1):17660. PubMed ID: 30518926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning.
    Ho CJ; Calderon-Delgado M; Chan CC; Lin MY; Tjiu JW; Huang SL; Chen HH
    J Biophotonics; 2021 Jan; 14(1):e202000271. PubMed ID: 32888382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPECTRAL DOMAIN VERSUS SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF THE RETINAL CAPILLARY PLEXUSES IN SICKLE CELL MACULOPATHY.
    Jung JJ; Chen MH; Frambach CR; Rofagha S; Lee SS
    Retin Cases Brief Rep; 2018 Spring; 12(2):87-92. PubMed ID: 27749746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.
    Lee SW; Song HW; Jung MY; Kim SH
    Opt Express; 2011 Oct; 19(22):21227-37. PubMed ID: 22108975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography.
    Butola A; Ahmad A; Dubey V; Srivastava V; Qaiser D; Srivastava A; Senthilkumaran P; Mehta DS
    Appl Opt; 2019 Feb; 58(5):A135-A141. PubMed ID: 30873970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced depth imaging in swept-source optical coherence tomography: Improving visibility of choroid and sclera, a masked study.
    Weill Y; Brosh K; Levi Vineberg T; Arieli Y; Caspi A; Potter MJ; Zadok D; Hanhart J
    Eur J Ophthalmol; 2020 Nov; 30(6):1295-1300. PubMed ID: 31347398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography.
    Wang H; Black AJ; Zhu J; Stigen TW; Al-Qaisi MK; Netoff TI; Abosch A; Akkin T
    Neuroimage; 2011 Oct; 58(4):984-92. PubMed ID: 21771662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography.
    Chen W; Du C; Pan Y
    J Biophotonics; 2018 Aug; 11(8):e201800004. PubMed ID: 29603668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.