These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31710989)

  • 1. Three dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions.
    Bit A; Alblawi A; Chattopadhyay H; Quais QA; Benim AC; Rahimi-Gorji M; Do HT
    Comput Methods Programs Biomed; 2020 Mar; 185():105163. PubMed ID: 31710989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigations of pulsatile flow in stenosed artery.
    Bit A; Chattopadhyay H
    Acta Bioeng Biomech; 2014; 16(4):33-44. PubMed ID: 25598070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.
    Shahcheraghi N; Dwyer HA; Cheer AY; Barakat AI; Rutaganira T
    J Biomech Eng; 2002 Aug; 124(4):378-87. PubMed ID: 12188204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of unsteady pulsatile Newtonian/non-Newtonian blood flow through curved stenosed arteries.
    Lakzian E; Akbarzadeh P
    Biomed Mater Eng; 2020; 30(5-6):525-540. PubMed ID: 31771034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.
    Piskin S; Ündar A; Pekkan K
    Artif Organs; 2015 Oct; 39(10):E164-75. PubMed ID: 25940836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.
    Liu B; Zheng J; Bach R; Tang D
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S6. PubMed ID: 25602370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependent non-Newtonian numerical study of the flow field in a realistic model of aortic arch.
    Del Gaudio C; Morbiducci U; Grigioni M
    Int J Artif Organs; 2006 Jul; 29(7):709-18. PubMed ID: 16874678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics.
    Pirola S; Cheng Z; Jarral OA; O'Regan DP; Pepper JR; Athanasiou T; Xu XY
    J Biomech; 2017 Jul; 60():15-21. PubMed ID: 28673664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Subject-Specific, Spatially Reduced, and Idealized Boundary Conditions on the Predicted Hemodynamic Environment in the Murine Aorta.
    Smith KA; Merchant SS; Hsu EW; Timmins LH
    Ann Biomed Eng; 2021 Dec; 49(12):3255-3266. PubMed ID: 34528150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation in the abdominal aorta and the visceral arteries with or without stenosis based on 2D PCMRI.
    Peng C; Liu J; He W; Qin W; Yuan T; Kan Y; Wang K; Wang S; Shi Y
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3569. PubMed ID: 34967124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics.
    Cilla M; Casales M; Peña E; Martínez MA; Malvè M
    J Biomech; 2020 Apr; 103():109691. PubMed ID: 32147240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics.
    Tse KM; Chang R; Lee HP; Lim SP; Venkatesh SK; Ho P
    Eur J Cardiothorac Surg; 2013 Apr; 43(4):829-38. PubMed ID: 22766960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of pulsatile flowfield in healthy thoracic aorta models.
    Wen CY; Yang AS; Tseng LY; Chai JW
    Ann Biomed Eng; 2010 Feb; 38(2):391-402. PubMed ID: 19890715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.