These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31711006)

  • 21. Extremophile Microalgae: the potential for biotechnological application.
    Malavasi V; Soru S; Cao G
    J Phycol; 2020 Jun; 56(3):559-573. PubMed ID: 31917871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [FeFe]-hydrogenases from green algae.
    Engelbrecht V; Happe T
    Methods Enzymol; 2018; 613():203-230. PubMed ID: 30509467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microalgae biofuel potentials (review).
    Ghasemi Y; Rasoul-Amini S; Naseri AT; Montazeri-Najafabady N; Mobasher MA; Dabbagh F
    Prikl Biokhim Mikrobiol; 2012; 48(2):150-68. PubMed ID: 22586908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).
    Strik DP; Terlouw H; Hamelers HV; Buisman CJ
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):659-68. PubMed ID: 18797867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abiotic stresses as tools for metabolites in microalgae.
    Paliwal C; Mitra M; Bhayani K; Bharadwaj SVV; Ghosh T; Dubey S; Mishra S
    Bioresour Technol; 2017 Nov; 244(Pt 2):1216-1226. PubMed ID: 28552566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst.
    Thangalazhy-Gopakumar S; Adhikari S; Chattanathan SA; Gupta RB
    Bioresour Technol; 2012 Aug; 118():150-7. PubMed ID: 22705518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Algae to Economically Viable Low-Carbon-Footprint Oil.
    Bhujade R; Chidambaram M; Kumar A; Sapre A
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():335-357. PubMed ID: 28592173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constraints to commercialization of algal fuels.
    Chisti Y
    J Biotechnol; 2013 Sep; 167(3):201-14. PubMed ID: 23886651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vivo Olefin Metathesis in Microalgae Upgrades Lipids to Building Blocks for Polymers and Chemicals.
    Schunck NS; Mecking S
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202211285. PubMed ID: 36062952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon partitioning in photosynthesis.
    Melis A
    Curr Opin Chem Biol; 2013 Jun; 17(3):453-6. PubMed ID: 23542013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach.
    Hernández D; Solana M; Riaño B; García-González MC; Bertucco A
    Bioresour Technol; 2014 Oct; 170():370-378. PubMed ID: 25151474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii.
    Cogne G; Rügen M; Bockmayr A; Titica M; Dussap CG; Cornet JF; Legrand J
    Biotechnol Prog; 2011; 27(3):631-40. PubMed ID: 21567987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.
    Meyer FW; Schubert N; Diele K; Teichberg M; Wild C; Enríquez S
    PLoS One; 2016; 11(8):e0160268. PubMed ID: 27487195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Algae biofuels: versatility for the future of bioenergy.
    Jones CS; Mayfield SP
    Curr Opin Biotechnol; 2012 Jun; 23(3):346-51. PubMed ID: 22104720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil.
    Megharaj M; Singleton I; McClure NC; Naidu R
    Arch Environ Contam Toxicol; 2000 May; 38(4):439-45. PubMed ID: 10787094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The lipid biochemistry of eukaryotic algae.
    Li-Beisson Y; Thelen JJ; Fedosejevs E; Harwood JL
    Prog Lipid Res; 2019 Apr; 74():31-68. PubMed ID: 30703388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2014 Apr; 53():271-81. PubMed ID: 24530547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching.
    Roach T; Miller R; Aigner S; Kranner I
    Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.