These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31711121)

  • 1. Posterior Alpha and Gamma Oscillations Index Divergent and Superadditive Effects of Cognitive Interference.
    Wiesman AI; Wilson TW
    Cereb Cortex; 2020 Mar; 30(3):1931-1945. PubMed ID: 31711121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered age-related alpha and gamma prefrontal-occipital connectivity serving distinct cognitive interference variants.
    Arif Y; Wiesman AI; Christopher-Hayes N; Okelberry HJ; Johnson HJ; Willett MP; Wilson TW
    Neuroimage; 2023 Oct; 280():120351. PubMed ID: 37659656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta and gamma oscillations index cognitive interference effects across a distributed motor network.
    Wiesman AI; Koshy SM; Heinrichs-Graham E; Wilson TW
    Neuroimage; 2020 Jun; 213():116747. PubMed ID: 32179103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alcohol Hits You When It Is Hard: Intoxication, Task Difficulty, and Theta Brain Oscillations.
    Rosen BQ; Padovan N; Marinkovic K
    Alcohol Clin Exp Res; 2016 Apr; 40(4):743-52. PubMed ID: 27012442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conflict processing networks: A directional analysis of stimulus-response compatibilities using MEG.
    Rosenberg J; Dong Q; Florin E; Sripad P; Boers F; Reske M; Shah NJ; Dammers J
    PLoS One; 2021; 16(2):e0247408. PubMed ID: 33630915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks.
    Peterson BS; Kane MJ; Alexander GM; Lacadie C; Skudlarski P; Leung HC; May J; Gore JC
    Brain Res Cogn Brain Res; 2002 May; 13(3):427-40. PubMed ID: 11919006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X; Banich MT; Jacobson BL; Tanabe JL
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of stimulus and response interference in a 2-1 mapping stroop task.
    Chen A; Bailey K; Tiernan BN; West R
    Int J Psychophysiol; 2011 May; 80(2):129-38. PubMed ID: 21356252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Independent Frontal Midline Theta Oscillations during Conflict Detection and Adaptation in a Simon-Type Manual Reaching Task.
    Töllner T; Wang Y; Makeig S; Müller HJ; Jung TP; Gramann K
    J Neurosci; 2017 Mar; 37(9):2504-2515. PubMed ID: 28137968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of movement-related oscillatory signatures by cognitive interference in healthy aging.
    Arif Y; Son JJ; Okelberry HJ; Johnson HJ; Willett MP; Wiesman AI; Wilson TW
    Geroscience; 2024 Jun; 46(3):3021-3034. PubMed ID: 38175521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered neural dynamics in occipital cortices serving visual-spatial processing in heavy alcohol users.
    Lew BJ; Wiesman AI; Rezich MT; Wilson TW
    J Psychopharmacol; 2020 Feb; 34(2):245-253. PubMed ID: 31331222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective perturbation of cognitive conflict in the human brain-A combined fMRI and rTMS study.
    Peschke C; Köster R; Korsch M; Frühholz S; Thiel CM; Herrmann M; Hilgetag CC
    Sci Rep; 2016 Dec; 6():38700. PubMed ID: 27958301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid modulation of sensory processing induced by stimulus conflict.
    Appelbaum LG; Smith DV; Boehler CN; Chen WD; Woldorff MG
    J Cogn Neurosci; 2011 Sep; 23(9):2620-8. PubMed ID: 20849233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-cue fronto-occipital alpha phase and distributed cortical oscillations predict failures of cognitive control.
    Hamm JP; Dyckman KA; McDowell JE; Clementz BA
    J Neurosci; 2012 May; 32(20):7034-41. PubMed ID: 22593071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.
    Cohen MX; Ridderinkhof KR
    PLoS One; 2013; 8(2):e57293. PubMed ID: 23451201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wisconsin Card Sorting Test synchronizes the prefrontal, temporal and posterior association cortex in different frequency ranges and extensions.
    González-Hernández JA; Pita-Alcorta C; Cedeño I; Bosch-Bayard J; Galán-Garcia L; Scherbaum WA; Figueredo-Rodriguez P
    Hum Brain Mapp; 2002 Sep; 17(1):37-47. PubMed ID: 12203687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas.
    Bauer M; Oostenveld R; Peeters M; Fries P
    J Neurosci; 2006 Jan; 26(2):490-501. PubMed ID: 16407546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception.
    Wittfoth M; Buck D; Fahle M; Herrmann M
    Neuroimage; 2006 Aug; 32(2):921-9. PubMed ID: 16677831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge.
    Beaton LE; Azma S; Marinkovic K
    PLoS One; 2018; 13(1):e0191200. PubMed ID: 29329355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.