BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31711128)

  • 1. Network control principles for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Akutsu T; Chen L
    Brief Bioinform; 2020 Sep; 21(5):1641-1662. PubMed ID: 31711128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of computational methods for predicting cancer driver genes.
    Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel hypergraph model for identifying and prioritizing personalized drivers in cancer.
    Zhang N; Ma F; Guo D; Pang Y; Wang C; Zhang Y; Zheng X; Wang M
    PLoS Comput Biol; 2024 Apr; 20(4):e1012068. PubMed ID: 38683860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation.
    Huang Y; Chen F; Sun H; Zhong C
    BMC Bioinformatics; 2024 Jan; 25(1):34. PubMed ID: 38254011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Framework for Identifying Mutated Driver Pathway and Cancer Progression.
    Zhang W; Wang SL
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):455-464. PubMed ID: 29990286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ConsensusDriver Improves upon Individual Algorithms for Predicting Driver Alterations in Different Cancer Types and Individual Patients.
    Bertrand D; Drissler S; Chia BK; Koh JY; Li C; Suphavilai C; Tan IB; Nagarajan N
    Cancer Res; 2018 Jan; 78(1):290-301. PubMed ID: 29259006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DriveWays: a method for identifying possibly overlapping driver pathways in cancer.
    Baali I; Erten C; Kazan H
    Sci Rep; 2020 Dec; 10(1):21971. PubMed ID: 33319839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients.
    Guo WF; Zhang SW; Feng YH; Liang J; Zeng T; Chen L
    Nucleic Acids Res; 2021 Apr; 49(7):e37. PubMed ID: 33434272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance assessment of sample-specific network control methods for bulk and single-cell biological data analysis.
    Guo WF; Yu X; Shi QQ; Liang J; Zhang SW; Zeng T
    PLoS Comput Biol; 2021 May; 17(5):e1008962. PubMed ID: 33956788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying driver genes for individual patients through inductive matrix completion.
    Zhang T; Zhang SW; Li Y
    Bioinformatics; 2021 Dec; 37(23):4477-4484. PubMed ID: 34175939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Graph Convolution Network-Based Model for Prioritizing Personalized Cancer Driver Genes of Individual Patients.
    Peng W; Yu P; Dai W; Fu X; Liu L; Pan Y
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):744-754. PubMed ID: 37195839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disease characterization using a partial correlation-based sample-specific network.
    Huang Y; Chang X; Zhang Y; Chen L; Liu X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32422654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Cancer Specific Driver Modules Using a Network-Based Method.
    Li F; Gao L; Wang P; Hu Y
    Molecules; 2018 May; 23(5):. PubMed ID: 29738475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.