BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31711301)

  • 1. On apparent mass-independent fractionation (MIF) signatures from phase partitioning at equilibrium.
    Campisi LD
    Isotopes Environ Health Stud; 2019 Dec; 55(6):607-629. PubMed ID: 31711301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulphur cycling in a Neoarchaean microbial mat.
    Meyer NR; Zerkle AL; Fike DA
    Geobiology; 2017 May; 15(3):353-365. PubMed ID: 28128527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Neoarchaean surficial sulphur cycle: An alternative hypothesis based on analogies with 20th-century atmospheric lead.
    Gallagher M; Whitehouse MJ; Kamber BS
    Geobiology; 2017 May; 15(3):385-400. PubMed ID: 28299862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Searching for the Great Oxidation Event in North America: A Reappraisal of the Huronian Supergroup by SIMS Sulfur Four-Isotope Analysis.
    Cui H; Kitajima K; Spicuzza MJ; Fournelle JH; Ishida A; Brown PE; Valley JW
    Astrobiology; 2018 May; 18(5):519-538. PubMed ID: 29791234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low-oxygen cyanobacterial mats.
    Gomes ML; Klatt JM; Dick GJ; Grim SL; Rico KI; Medina M; Ziebis W; Kinsman-Costello L; Sheldon ND; Fike DA
    Geobiology; 2022 Jan; 20(1):60-78. PubMed ID: 34331395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates.
    Williford KH; Ushikubo T; Lepot K; Kitajima K; Hallmann C; Spicuzza MJ; Kozdon R; Eigenbrode JL; Summons RE; Valley JW
    Geobiology; 2016 Mar; 14(2):105-28. PubMed ID: 26498593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unprecedented
    Drake H; Whitehouse MJ; Heim C; Reiners PW; Tillberg M; Hogmalm KJ; Dopson M; Broman C; Åström ME
    Geobiology; 2018 Sep; 16(5):556-574. PubMed ID: 29947123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explaining the structure of the Archean mass-independent sulfur isotope record.
    Halevy I; Johnston DT; Schrag DP
    Science; 2010 Jul; 329(5988):204-7. PubMed ID: 20508089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. δ(34)S values in recent sea sediments and their significance using several sediment profiles from the western Baltic Sea.
    Hartmann M; Nielsen H
    Isotopes Environ Health Stud; 2012; 48(1):7-32. PubMed ID: 22352384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphur stable isotope systematics in diagenetic pyrite from the North Sea hydrocarbon reservoirs revealed by laser combustion analysis.
    Fallick AE; Boyce AJ; McConville P
    Isotopes Environ Health Stud; 2012; 48(1):144-65. PubMed ID: 22321244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.
    Lin Z; Sun X; Peckmann J; Lu Y; Strauss H; Xu L; Lu H; Teichert BMA
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28892022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment.
    Halevy I
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17644-9. PubMed ID: 23572589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic pyrite formation produces a large Fe isotope fractionation.
    Guilbaud R; Butler IB; Ellam RM
    Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes.
    Gantner N; Hintelmann H; Zheng W; Muir DC
    Environ Sci Technol; 2009 Dec; 43(24):9148-54. PubMed ID: 20000504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulphur isotope evidence for an oxic Archaean atmosphere.
    Ohmoto H; Watanabe Y; Ikemi H; Poulson SR; Taylor BE
    Nature; 2006 Aug; 442(7105):908-11. PubMed ID: 16929296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of pyrite grain size on the final oxygen isotope difference between sulphate and water in aerobic pyrite oxidation experiments.
    Heidel C; Tichomirowa M; Junghans M
    Isotopes Environ Health Stud; 2009 Dec; 45(4):321-42. PubMed ID: 20183241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen isotope constraints on the sulfur cycle over the past 10 million years.
    Turchyn AV; Schrag DP
    Science; 2004 Mar; 303(5666):2004-7. PubMed ID: 15044800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures.
    Gomes ML; Fike DA; Bergmann KD; Jones C; Knoll AH
    Geobiology; 2018 Jan; 16(1):17-34. PubMed ID: 29047210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple sulphur isotope record of Paleoarchean sedimentary rocks across the Onverwacht Group, Barberton Greenstone Belt, South Africa.
    Grosch EG; McLoughlin N; Whitehouse M
    Geobiology; 2023 Mar; 21(2):153-167. PubMed ID: 36571166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone.
    Pasquier V; Fike DA; Halevy I
    Nat Commun; 2021 Jul; 12(1):4403. PubMed ID: 34285238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.