BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31711520)

  • 1. HO-1 promotes resistance to an EZH2 inhibitor through the pRB-E2F pathway: correlation with the progression of myelodysplastic syndrome into acute myeloid leukemia.
    He Z; Zhang S; Ma D; Fang Q; Yang L; Shen S; Chen Y; Ren L; Wang J
    J Transl Med; 2019 Nov; 17(1):366. PubMed ID: 31711520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEK/ERK and PI3K/AKT pathway inhibitors affect the transformation of myelodysplastic syndrome into acute myeloid leukemia via H3K27me3 methylases and de‑methylases.
    Zheng Z; Chen X; Zhang Y; Ren F; Ma Y
    Int J Oncol; 2023 Dec; 63(6):. PubMed ID: 37921060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EZH2 Promotes Corneal Endothelial Cell Apoptosis by Mediating H3K27me3 and Inhibiting HO-1 Transcription.
    Lin Y; Su H; Zou B; Huang M
    Curr Eye Res; 2023 Dec; 48(12):1122-1132. PubMed ID: 37800319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vemurafenib induces senescence in acute myeloid leukemia and myelodysplastic syndrome by activating the HIPPO signaling pathway: implications for potential targeted therapy.
    Zhou Q; Zhang J; Zhang J; Liang S; Cai D; Xiao H; Zhu Y; Xiang W; Rodrigues-Lima F; Chi J; Guidez F; Wang L
    Biol Direct; 2024 Jan; 19(1):6. PubMed ID: 38178263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SHP-2 and PTP-pest induction during Rb-E2F associated apoptosis.
    Morales LD; Pena K; Kim DJ; Lieman JH
    Cell Mol Biol Lett; 2012 Sep; 17(3):422-32. PubMed ID: 22644489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p53 immunohistochemistry as an ancillary tool for rapid assessment of residual disease in TP53-mutated acute myeloid leukemia and myelodysplastic syndromes.
    Brar N; Lawrence L; Fung E; Zehnder JL; Greenberg PL; Mannis GN; Zhang TY; Gratzinger D; Oak J; Silva O; Kurzer J; Tan B; Menke JR; Fernandez-Pol S
    Am J Clin Pathol; 2024 Apr; ():. PubMed ID: 38643353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of pevonedistat in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML): hope or hype?
    Snow A; Zeidner JF
    Ther Adv Hematol; 2022; 13():20406207221112899. PubMed ID: 35898435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pRB, a tumor suppressor with a stabilizing presence.
    Manning AL; Dyson NJ
    Trends Cell Biol; 2011 Aug; 21(8):433-41. PubMed ID: 21664133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic vulnerabilities of leukemia harboring inactivating EZH2 mutations.
    Alqazzaz MA; Luciani GM; Vu V; Machado RAC; Szewczyk MM; Adamson EC; Cheon S; Li F; Arrowsmith CH; Minden MD; Barsyte-Lovejoy D
    Exp Hematol; 2024 Feb; 130():104135. PubMed ID: 38072134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymph node myeloid sarcoma with TP53‑associated myelodysplastic syndrome: A case report.
    Mao M; Deng S
    Oncol Lett; 2024 Jul; 28(1):324. PubMed ID: 38807682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of MDS in Pediatric Patients with GATA2 Deficiency: Increased Histone Trimethylation and Deregulated Apoptosis as Potential Drivers of Transformation.
    Schreiber F; Piontek G; Schneider-Kimoto Y; Schwarz-Furlan S; De Vito R; Locatelli F; Gengler C; Yoshimi A; Jung A; Klauschen F; Niemeyer CM; Erlacher M; Rudelius M
    Cancers (Basel); 2023 Nov; 15(23):. PubMed ID: 38067298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex imaging reveals spatially resolved DNA-damage response neighborhoods in TP53-mutated myelodysplastic neoplasms.
    Yeung T; Zhang Y; Kennedy B; Walsh C; Love T; Xia D; Bhattacharya A; Krishnan RG; Head D; Burack R
    J Pathol; 2024 Jul; 263(3):386-395. PubMed ID: 38801208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms.
    Kaisrlikova M; Kundrat D; Koralkova P; Trsova I; Lenertova Z; Votavova H; Merkerova MD; Krejcik Z; Vesela J; Vostry M; Simeckova R; Markova MS; Lauermannova M; Jonasova A; Cermak J; Divoky V; Belickova M
    Int J Cancer; 2024 May; 154(9):1652-1668. PubMed ID: 38180088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pRb-E2F signaling in life of mesenchymal stem cells: Cell cycle, cell fate, and cell differentiation.
    Popov B; Petrov N
    Genes Dis; 2014 Dec; 1(2):174-187. PubMed ID: 30258863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing Blood Cells of High-Risk Myelodysplastic Syndrome Patients Using Interferometric Phase Microscopy and Fluorescent Flow Cytometry.
    Barnea I; Luria L; Girsault A; Dabah O; Dudaie M; Mirsky SK; Merkel D; Shaked NT
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retracted: lncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia.
    International SC
    Stem Cells Int; 2023; 2023():9760693. PubMed ID: 37829611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retracted: Clinical Significance of EZH2 in Acute Myeloid Leukemia.
    Intelligence And Neuroscience C
    Comput Intell Neurosci; 2023; 2023():9761597. PubMed ID: 37800055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. M2 Polarization May Contribute to Formation of Granulomatous Dermatitis in Progression of Myelodysplastic Syndrome to Acute Myeloid Leukemia.
    Fang WC; Du JS; Su YC; Chiu LW; Yang TT
    Dermatol Pract Concept; 2023 Oct; 13(4):. PubMed ID: 37992346
    [No Abstract]   [Full Text] [Related]  

  • 19. CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells.
    Yong SB; Chung JY; Kim SS; Choi HS; Kim YH
    Biomaterials; 2020 Feb; 230():119651. PubMed ID: 31787334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ivacaftor attenuates gentamicin-induced ototoxicity through the CFTR-Nrf2-HO1/NQO1 pathway.
    Hu R; Wu F; Zheng YQ
    Redox Rep; 2024 Dec; 29(1):2332038. PubMed ID: 38563333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.