BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31711534)

  • 1. Combining string and phonetic similarity matching to identify misspelt names of drugs in medical records written in Portuguese.
    Tissot H; Dobson R
    J Biomed Semantics; 2019 Nov; 10(Suppl 1):17. PubMed ID: 31711534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and mapping of drug names from free text to a standardized nomenclature.
    Levin MA; Krol M; Doshi AM; Reich DL
    AMIA Annu Symp Proc; 2007 Oct; 2007():438-42. PubMed ID: 18693874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cimind: A phonetic-based tool for multilingual named entity recognition in biomedical texts.
    Cabot C; Darmoni S; Soualmia LF
    J Biomed Inform; 2019 Jun; 94():103176. PubMed ID: 30980962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning string similarity measures for gene/protein name dictionary look-up using logistic regression.
    Tsuruoka Y; McNaught J; Tsujii J; Ananiadou S
    Bioinformatics; 2007 Oct; 23(20):2768-74. PubMed ID: 17698493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matching health information seekers' queries to medical terms.
    Soualmia LF; Prieur-Gaston E; Moalla Z; Lecroq T; Darmoni SJ
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S11. PubMed ID: 23095521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminative application of string similarity methods to chemical and non-chemical names for biomedical abbreviation clustering.
    Yamaguchi A; Yamamoto Y; Kim JD; Takagi T; Yonezawa A
    BMC Genomics; 2012 Jun; 13 Suppl 3(Suppl 3):S8. PubMed ID: 22759617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of approximate string matching in a biomedical text retrieval problem.
    Wang JF; Li ZR; Cai CZ; Chen YZ
    Comput Biol Med; 2005 Oct; 35(8):717-24. PubMed ID: 16124992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity-Based Unsupervised Spelling Correction Using BioWordVec: Development and Usability Study of Bacterial Culture and Antimicrobial Susceptibility Reports.
    Kim T; Han SW; Kang M; Lee SH; Kim JH; Joo HJ; Sohn JW
    JMIR Med Inform; 2021 Feb; 9(2):e25530. PubMed ID: 33616536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the feasibility of large-scale natural language processing in a corpus of ordinary medical records: a lexical analysis.
    Hersh WR; Campbell EM; Malveau SE
    Proc AMIA Annu Fall Symp; 1997; ():580-4. PubMed ID: 9357692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Block-suffix shifting: fast, simultaneous medical concept set identification in large medical record corpora.
    Liu Y; Lita LV; Niculescu RS; Mitra P; Giles CL
    AMIA Annu Symp Proc; 2008 Nov; 2008():424-8. PubMed ID: 18999282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MLM-based typographical error correction of unstructured medical texts for named entity recognition.
    Lee EB; Heo GE; Choi CM; Song M
    BMC Bioinformatics; 2022 Nov; 23(1):486. PubMed ID: 36384464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of misspelled words without a comprehensive dictionary using prevalence analysis.
    Turchin A; Chu JT; Shubina M; Einbinder JS
    AMIA Annu Symp Proc; 2007 Oct; 2007():751-5. PubMed ID: 18693937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of natural language programming to extract medication from unstructured electronic medical records.
    Chhieng D; Day T; Gordon G; Hicks J
    AMIA Annu Symp Proc; 2007 Oct; ():908. PubMed ID: 18694008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ensemble Method for Spelling Correction in Consumer Health Questions.
    Kilicoglu H; Fiszman M; Roberts K; Demner-Fushman D
    AMIA Annu Symp Proc; 2015; 2015():727-36. PubMed ID: 26958208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An interpretable natural language processing system for written medical examination assessment.
    Sarker A; Klein AZ; Mee J; Harik P; Gonzalez-Hernandez G
    J Biomed Inform; 2019 Oct; 98():103268. PubMed ID: 31421211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts.
    Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M
    Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keeping up with changing source system terms in a local health information infrastructure: running to stand still.
    Vreeman DJ
    Stud Health Technol Inform; 2007; 129(Pt 1):775-9. PubMed ID: 17911822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The similarity of drug names as a possible cause of confusion: Analysis of data from outpatient care].
    Schrader T; Tetzlaff L; Beck E; Mindt S; Geiss F; Hauser K; Franken C
    Z Evid Fortbild Qual Gesundhwes; 2020 Apr; 150-152():29-37. PubMed ID: 32279980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dictionary to identify small molecules and drugs in free text.
    Hettne KM; Stierum RH; Schuemie MJ; Hendriksen PJ; Schijvenaars BJ; Mulligen EM; Kleinjans J; Kors JA
    Bioinformatics; 2009 Nov; 25(22):2983-91. PubMed ID: 19759196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building a protein name dictionary from full text: a machine learning term extraction approach.
    Shi L; Campagne F
    BMC Bioinformatics; 2005 Apr; 6():88. PubMed ID: 15817129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.