BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31711683)

  • 1. Compound eutrophication index: An integrated approach for assessing ecological risk and identifying the critical element controlling harmful algal blooms in coastal seas.
    Lin G; Li K; Liang S; Li Y; Su Y; Wang X
    Mar Pollut Bull; 2020 Jan; 150():110585. PubMed ID: 31711683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodology for forecast and control of coastal harmful algal blooms by embedding a compound eutrophication index into the ecological risk index.
    Lin G; Xu X; Wang P; Liang S; Li Y; Su Y; Li K; Wang X
    Sci Total Environ; 2020 Sep; 735():139404. PubMed ID: 32473442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes.
    Glibert PM
    Mar Pollut Bull; 2017 Nov; 124(2):591-606. PubMed ID: 28434665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization.
    Huang J; Zhang Y; Arhonditsis GB; Gao J; Chen Q; Peng J
    Water Res; 2020 Aug; 181():115902. PubMed ID: 32505885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum.
    Paerl HW; Otten TG; Kudela R
    Environ Sci Technol; 2018 May; 52(10):5519-5529. PubMed ID: 29656639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hindcasting harmful algal bloom risk due to land-based nutrient pollution in the Eastern Chinese coastal seas.
    Wang H; Bouwman AF; Van Gils J; Vilmin L; Beusen AHW; Wang J; Liu X; Yu Z; Ran X
    Water Res; 2023 Mar; 231():119669. PubMed ID: 36716567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warming Amplifies the Frequency of Harmful Algal Blooms with Eutrophication in Chinese Coastal Waters.
    Xiao X; Agustí S; Pan Y; Yu Y; Li K; Wu J; Duarte CM
    Environ Sci Technol; 2019 Nov; 53(22):13031-13041. PubMed ID: 31609108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interannual and Decadal Changes in Harmful Algal Blooms in the Coastal Waters of Fujian, China.
    Zhang C
    Toxins (Basel); 2022 Aug; 14(9):. PubMed ID: 36136515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmful algal blooms (HABs) in Daya Bay, China: an in situ study of primary production and environmental impacts.
    Song X; Huang L; Zhang J; Huang H; Li T; Su Q
    Mar Pollut Bull; 2009 Sep; 58(9):1310-8. PubMed ID: 19501846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of best management practices for mitigating harmful algal blooms risk in an agricultural lake basin using a watershed model integrated with Bayesian Network approach.
    Liu D; Huang L; Jia L; Li S; Wang P
    J Environ Manage; 2024 Jul; 364():121433. PubMed ID: 38878574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring, modeling and projection of harmful algal blooms in China.
    Guan W; Bao M; Lou X; Zhou Z; Yin K
    Harmful Algae; 2022 Jan; 111():102164. PubMed ID: 35016768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A historical overview of coastal eutrophication in the China Seas.
    Wang B; Xin M; Wei Q; Xie L
    Mar Pollut Bull; 2018 Nov; 136():394-400. PubMed ID: 30509822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First record of a Takayama bloom in Haizhou Bay in response to dissolved organic nitrogen and phosphorus.
    Zhang QC; Wang YF; Song MJ; Wang JX; Ji NJ; Liu C; Kong FZ; Yan T; Yu RC
    Mar Pollut Bull; 2022 May; 178():113572. PubMed ID: 35381462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algal blooms in the middle and lower Han River: Characteristics, early warning and prevention.
    Xin X; Zhang H; Lei P; Tang W; Yin W; Li J; Zhong H; Li K
    Sci Total Environ; 2020 Mar; 706():135293. PubMed ID: 31846885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of harmful algal blooms in the East China Sea under eutrophication and warming scenarios.
    Zhou ZX; Yu RC; Zhou MJ
    Water Res; 2022 Aug; 221():118807. PubMed ID: 35810634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large reductions in nutrient losses needed to avoid future coastal eutrophication across Europe.
    Ural-Janssen A; Kroeze C; Meers E; Strokal M
    Mar Environ Res; 2024 May; 197():106446. PubMed ID: 38518406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significantly decreasing harmful algal blooms in China seas in the early 21st century.
    Zeng J; Yin B; Wang Y; Huai B
    Mar Pollut Bull; 2019 Feb; 139():270-274. PubMed ID: 30686428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing eutrophication in the coastal seas of China from 1970 to 2050.
    Strokal M; Yang H; Zhang Y; Kroeze C; Li L; Luan S; Wang H; Yang S; Zhang Y
    Mar Pollut Bull; 2014 Aug; 85(1):123-40. PubMed ID: 24981103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive study of algal blooms variation in Jiaozhou Bay based on google earth engine and deep learning.
    Guan B; Ning S; Ding X; Kang D; Song J; Yuan H
    Sci Rep; 2023 Aug; 13(1):13930. PubMed ID: 37626224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabarcoding analysis of harmful algal species in Jiaozhou Bay.
    Liu S; Gibson K; Cui Z; Chen Y; Sun X; Chen N
    Harmful Algae; 2020 Feb; 92():101772. PubMed ID: 32113606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.