BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31712911)

  • 1. Dust exposure risk from stone crushing to workers and locally grown plant species in Quetta, Pakistan.
    Leghari SK; Zaidi MA; Siddiqui MF; Sarangzai AM; Sheikh SU; Arsalan
    Environ Monit Assess; 2019 Nov; 191(12):740. PubMed ID: 31712911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to respirable particulates and silica in and around the stone crushing units in central India.
    Mukhopadhyay K; Ramalingam A; Ramani R; Dasu V; Sadasivam A; Kumar P; Prasad SN; Sambandam S; Balakrishnan K
    Ind Health; 2011; 49(2):221-7. PubMed ID: 21173527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of fugitive dust emission and control measures in stone crushing industry.
    Sivacoumar R; Mohan Raj S; Chinnadurai SJ; Jayabalou R
    J Environ Monit; 2009 May; 11(5):987-97. PubMed ID: 19436856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of dust exposure in a steel plant in the eastern coast of peninsular Malaysia.
    Nurul AH; Shamsul BM; Noor Hassim I
    Work; 2016 Nov; 55(3):655-662. PubMed ID: 27792033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to particulate matter on an Indian stone-crushing site.
    Semple S; Green DA; McAlpine G; Cowie H; Seaton A
    Occup Environ Med; 2008 May; 65(5):300-5. PubMed ID: 17681995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-morphological response of some native dicotyledonous species to particulate pollutants emitted from stone crushing activities.
    Ahmad I; Shamsi L; Hameed M; Fatima S; Ahmad F; Ahmad MSA; Ashraf M; Javaid A; Sultan MA
    Environ Sci Pollut Res Int; 2021 May; 28(20):25529-25541. PubMed ID: 33459989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran.
    Bahrami AR; Golbabai F; Mahjub H; Qorbani F; Aliabadi M; Barqi M
    Ind Health; 2008 Aug; 46(4):404-8. PubMed ID: 18716390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occupational exposure to particulate matters and telomere length.
    Sanei B; Zavar Reza J; Momtaz M; Azimi M; Zare Sakhvidi MJ
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36298-36305. PubMed ID: 30368702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between leaf dust retention capacity and leaf microstructure of six common tree species for campus greening.
    Tan XY; Liu L; Wu DY
    Int J Phytoremediation; 2022; 24(11):1213-1221. PubMed ID: 35040734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of dust control methods for crystalline silica and respirable suspended particulate matter exposure during manual concrete surface grinding.
    Akbar-Khanzadeh F; Milz SA; Wagner CD; Bisesi MS; Ames AL; Khuder S; Susi P; Akbar-Khanzadeh M
    J Occup Environ Hyg; 2010 Dec; 7(12):700-11. PubMed ID: 21058155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respirable dust and silica exposure among World Trade Center cleanup workers.
    Pavilonis BT; Mirer FE
    J Occup Environ Hyg; 2017 Mar; 14(3):187-194. PubMed ID: 27717301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effects of dust pollution on specific plant species near and around the marble mining site in Rajasthan, India.
    Tarannum N; Rathore N; Natwadiya A; Kumar S; Chaudhary N
    Environ Sci Pollut Res Int; 2024 May; 31(23):33515-33529. PubMed ID: 38683429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vegetative buffers for fan emissions from poultry farms: 2. ammonia, dust and foliar nitrogen.
    Adrizal A; Patterson PH; Hulet RM; Bates RM; Myers CA; Martin GP; Shockey RL; van der Grinten M; Anderson DA; Thompson JR
    J Environ Sci Health B; 2008 Jan; 43(1):96-103. PubMed ID: 18161579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Job Tasks as Determinants of Thoracic Aerosol Exposure in the Cement Production Industry.
    Notø H; Nordby KC; Skare Ø; Eduard W
    Ann Work Expo Health; 2017 Dec; 62(1):88-100. PubMed ID: 29069343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area.
    Klasson M; Bryngelsson IL; Pettersson C; Husby B; Arvidsson H; Westberg H
    Ann Occup Hyg; 2016 Jul; 60(6):684-99. PubMed ID: 27143598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure to respirable silica among clay brick workers in Kathmandu valley, Nepal.
    Sanjel S; Khanal SN; Thygerson SM; Carter W; Johnston JD; Joshi SK
    Arch Environ Occup Health; 2018; 73(6):347-350. PubMed ID: 29272207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact Assessment of Atmospheric Dust on Foliage Pigments and Pollution Resistances of Plants Grown Nearby Coal Based Thermal Power Plants.
    Hariram M; Sahu R; Elumalai SP
    Arch Environ Contam Toxicol; 2018 Jan; 74(1):56-70. PubMed ID: 28879476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work.
    Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P
    Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicron particle monitoring of paving and related road construction operations.
    Freund A; Zuckerman N; Baum L; Milek D
    J Occup Environ Hyg; 2012; 9(5):298-307. PubMed ID: 22500951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.