These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31712938)

  • 1. Predicting growth plate orientation with altered hip loading: potential cause of cam morphology.
    Sadeghian SM; Lewis CL; Shefelbine SJ
    Biomech Model Mechanobiol; 2020 Apr; 19(2):701-712. PubMed ID: 31712938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capital femoral epiphysis and growth plate of the asymptomatic hip joint in unilateral Perthes disease.
    Kandzierski G; Karski T; Kozlowski K
    J Pediatr Orthop B; 2003 Nov; 12(6):380-6. PubMed ID: 14530695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of growth plate geometry and growth direction on prediction of proximal femoral morphology.
    Yadav P; Shefelbine SJ; Gutierrez-Farewik EM
    J Biomech; 2016 Jun; 49(9):1613-1619. PubMed ID: 27063249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth.
    Kainz H; Killen BA; Wesseling M; Perez-Boerema F; Pitto L; Garcia Aznar JM; Shefelbine S; Jonkers I
    PLoS One; 2020; 15(7):e0235966. PubMed ID: 32702015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical factors explain development of cam-type deformity.
    Roels P; Agricola R; Oei EH; Weinans H; Campoli G; Zadpoor AA
    Osteoarthritis Cartilage; 2014 Dec; 22(12):2074-82. PubMed ID: 25241242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal femoral physis shear in slipped capital femoral epiphysis--a finite element study.
    Fishkin Z; Armstrong DG; Shah H; Patra A; Mihalko WM
    J Pediatr Orthop; 2006; 26(3):291-4. PubMed ID: 16670537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanobiological predictions of growth front morphology in developmental hip dysplasia.
    Shefelbine SJ; Carter DR
    J Orthop Res; 2004 Mar; 22(2):346-52. PubMed ID: 15013095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of deformity of the developing hip.
    Siffert RS
    Clin Orthop Relat Res; 1981 Oct; (160):14-29. PubMed ID: 7285414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale finite element model of growth plate damage during the development of slipped capital femoral epiphysis.
    Farzaneh S; Paseta O; Gómez-Benito MJ
    Biomech Model Mechanobiol; 2015 Apr; 14(2):371-85. PubMed ID: 25149148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential role of variations in juvenile hip geometry on the development of Legg-Calvé-Perthes disease: a biomechanical investigation.
    Pinheiro MDS; Dobson C; Clarke NM; Fagan M
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):194-200. PubMed ID: 29419321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of physiological loading in total hip replacements.
    Ramos A; Fonseca F; Simões JA
    J Biomech Eng; 2006 Aug; 128(4):579-87. PubMed ID: 16813449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologic and Pathologic Development of the Infantile and Adolescent Hip Joint: Descriptive and Functional Aspects.
    Heimkes B; Wegener V; Birkenmaier C; Ziegler CM
    Semin Musculoskelet Radiol; 2019 Oct; 23(5):477-488. PubMed ID: 31556083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical and biomechanical investigations of the iliotibial tract.
    Birnbaum K; Siebert CH; Pandorf T; Schopphoff E; Prescher A; Niethard FU
    Surg Radiol Anat; 2004 Dec; 26(6):433-46. PubMed ID: 15378277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Age-related force distribution at the proximal end of the femur in normally growing children].
    Heimkes B; Posel P; Plitz W; Zimmer M
    Z Orthop Ihre Grenzgeb; 1997; 135(1):17-23. PubMed ID: 9199067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific parameterised cam geometry in finite element models of femoroacetabular impingement of the hip.
    Cooper RJ; Williams S; Mengoni M; Jones AC
    Clin Biomech (Bristol, Avon); 2018 May; 54():62-70. PubMed ID: 29554551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Hip Stresses Resulting From a Cam Deformity and Decreased Femoral Neck-Shaft Angle During Level Walking.
    Ng KC; Mantovani G; Lamontagne M; Labrosse MR; Beaulé PE
    Clin Orthop Relat Res; 2017 Apr; 475(4):998-1008. PubMed ID: 27580734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modeling of proximal femur with quantifiable weight-bearing area in standing position.
    Yang P; Lin TY; Xu JL; Zeng HY; Chen D; Xiong BL; Pang FX; Chen ZQ; He W; Wei QS; Zhang QW
    J Orthop Surg Res; 2020 Sep; 15(1):384. PubMed ID: 32887611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.