BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

870 related articles for article (PubMed ID: 31713206)

  • 21. Mechanophysical Cues in Extracellular Matrix Regulation of Cell Behavior.
    Wang T; Nanda SS; Papaefthymiou GC; Yi DK
    Chembiochem; 2020 May; 21(9):1254-1264. PubMed ID: 31868957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.
    Hinderer S; Brauchle E; Schenke-Layland K
    Adv Healthc Mater; 2015 Nov; 4(16):2326-41. PubMed ID: 25778713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular matrix-based biomaterial scaffolds and the host response.
    Aamodt JM; Grainger DW
    Biomaterials; 2016 Apr; 86():68-82. PubMed ID: 26890039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The promise of regenerative medicine in the treatment of urogenital disorders.
    Keshel SH; Rahimi A; Hancox Z; Ebrahimi M; Khojasteh A; Sefat F
    J Biomed Mater Res A; 2020 Aug; 108(8):1747-1759. PubMed ID: 32270582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Naturally-Derived Biomaterials for Tissue Engineering Applications.
    Brovold M; Almeida JI; Pla-Palacín I; Sainz-Arnal P; Sánchez-Romero N; Rivas JJ; Almeida H; Dachary PR; Serrano-Aulló T; Soker S; Baptista PM
    Adv Exp Med Biol; 2018; 1077():421-449. PubMed ID: 30357702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
    Green DW; Watson GS; Watson JA; Lee DJ; Lee JM; Jung HS
    Acta Biomater; 2016 Sep; 42():33-45. PubMed ID: 27381524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design Parameters of Tissue-Engineering Scaffolds at the Atomic Scale.
    Jekhmane S; Prachar M; Pugliese R; Fontana F; Medeiros-Silva J; Gelain F; Weingarth M
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16943-16951. PubMed ID: 31573131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decellularization of Skin Tissue.
    Kumar N; Kumar V; Purohit S; Gangwar AK; Shrivastava S; Maiti SK; Saxena S; Mathews DD; Raghuvanshi PDS; Singh AK; Singh KP
    Adv Exp Med Biol; 2021; 1345():165-191. PubMed ID: 34582023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.
    Magin CM; Alge DL; Anseth KS
    Biomed Mater; 2016 Mar; 11(2):022001. PubMed ID: 26942469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds.
    Zhang F; King MW
    Adv Healthc Mater; 2020 Jul; 9(13):e1901358. PubMed ID: 32424996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applications of Scaffolds in Tissue Engineering: Current Utilization and Future Prospective.
    Yadav S; Khan J; Yadav A
    Curr Gene Ther; 2024; 24(2):94-109. PubMed ID: 37921144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic ECM: Bioactive Synthetic Hydrogels for 3D Tissue Engineering.
    Unal AZ; West JL
    Bioconjug Chem; 2020 Oct; 31(10):2253-2271. PubMed ID: 32786365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peptide-based viscoelastic matrices for drug delivery and tissue repair.
    Ramachandran S; Yu YB
    BioDrugs; 2006; 20(5):263-9. PubMed ID: 17025372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds.
    Golchin A; Farzaneh S; Porjabbar B; Sadegian F; Estaji M; Ranjbarvan P; Kanafimahbob M; Ranjbari J; Salehi-Nik N; Hosseinzadeh S
    Curr Stem Cell Res Ther; 2021; 16(2):209-229. PubMed ID: 32691716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of 3D in vitro technology for medical applications.
    Ou KL; Hosseinkhani H
    Int J Mol Sci; 2014 Oct; 15(10):17938-62. PubMed ID: 25299693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycomics: New Challenges and Opportunities in Regenerative Medicine.
    Russo L; Cipolla L
    Chemistry; 2016 Sep; 22(38):13380-8. PubMed ID: 27400428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair.
    Tang JD; Lampe KJ
    Biomed Mater; 2018 Feb; 13(3):034103. PubMed ID: 29295967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.