These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31713556)

  • 1. Experimental and theoretical investigation of lithium-ion conductivity in Li
    Fanah SJ; Yu M; Ramezanipour F
    Dalton Trans; 2019 Nov; 48(46):17281-17290. PubMed ID: 31713556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for Enhancing Lithium-Ion Conductivity of Triple-Layered Ruddlesden-Popper Oxides: Case Study of Li
    Fanah SJ; Ramezanipour F
    Inorg Chem; 2020 Jul; 59(14):9718-9727. PubMed ID: 32594740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT calculations of the synergistic effect of λ-MnO
    Zhang H; Du X; Ding S; Wang Q; Chang L; Ma X; Hao X; Pen C
    Phys Chem Chem Phys; 2019 Apr; 21(15):8133-8140. PubMed ID: 30932117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.
    Das S; Dutta D; Araujo RB; Chakraborty S; Ahuja R; Bhattacharyya AJ
    Phys Chem Chem Phys; 2016 Aug; 18(32):22323-30. PubMed ID: 27459636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li
    Shin YK; Sengul MY; Jonayat ASM; Lee W; Gomez ED; Randall CA; Duin ACTV
    Phys Chem Chem Phys; 2018 Aug; 20(34):22134-22147. PubMed ID: 30116814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the structure-property relationship paradigm: influence of the crystal structure and microstructure on the Li+ conductivity of La2/3Li(x)Ti(1-x)Al(x)O3 Oxides.
    García-Martín S; Morata-Orrantía A; Alario-Franco MA; Rodríguez-Carvajal J; Amador U
    Chemistry; 2007; 13(19):5607-16. PubMed ID: 17415741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural factors that enhance lithium mobility in fast-ion Li(1+x)Ti(2-x)Al(x)(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K.
    Arbi K; Hoelzel M; Kuhn A; García-Alvarado F; Sanz J
    Inorg Chem; 2013 Aug; 52(16):9290-6. PubMed ID: 23898863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li
    Strangmüller S; Eickhoff H; Müller D; Klein W; Raudaschl-Sieber G; Kirchhain H; Sedlmeier C; Baran V; Senyshyn A; Deringer VL; van Wüllen L; Gasteiger HA; Fässler TF
    J Am Chem Soc; 2019 Sep; 141(36):14200-14209. PubMed ID: 31403777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium diffusion pathways and vacancy formation in the Pmmn-Li(1-x)FeO2 electrode material.
    Catti M; Montero-Campillo M
    Phys Chem Chem Phys; 2011 Jun; 13(23):11156-64. PubMed ID: 21573290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local structure and lithium mobility in intercalated Li3Al(x)Ti(2-x)(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study.
    Arbi K; Hoelzel M; Kuhn A; García-Alvarado F; Sanz J
    Phys Chem Chem Phys; 2014 Sep; 16(34):18397-405. PubMed ID: 25070935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronically driven structural distortions in lithium intercalates of the n = 2 Ruddlesden-Popper-type host Y2Ti2O5S2: synthesis, structure, and properties of LixY2Ti2O5S2 (0 < x < 2).
    Hyett G; Rutt OJ; Gál ZA; Denis SG; Hayward MA; Clarke SJ
    J Am Chem Soc; 2004 Feb; 126(7):1980-91. PubMed ID: 14971931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li6CuB4O10.
    Strauss F; Rousse G; Alves Dalla Corte D; Ben Hassine M; Saubanère M; Tang M; Vezin H; Courty M; Dominko R; Tarascon JM
    Phys Chem Chem Phys; 2016 Jun; 18(22):14960-9. PubMed ID: 27189653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation Miscibility and Lithium Mobility in NASICON Li
    Kahlaoui R; Arbi K; Sobrados I; Jimenez R; Sanz J; Ternane R
    Inorg Chem; 2017 Feb; 56(3):1216-1224. PubMed ID: 28067501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of transition metal cations on the local structure and lithium transport in disordered rock-salt oxides.
    Semykina DO; Morkhova YA; Kabanov AA; Mishchenko KV; Slobodyuk AB; Kirsanova MA; Podgornova OA; Shindrov AA; Okhotnikov KS; Kosova NV
    Phys Chem Chem Phys; 2022 Mar; 24(10):5823-5832. PubMed ID: 35224598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ionic conductivity in lithium-boron oxide materials and its relation to structural, electronic and defect properties: insights from theory.
    Islam MM; Bredow T; Heitjans P
    J Phys Condens Matter; 2012 May; 24(20):203201. PubMed ID: 22538232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Structural Polymorphism on Ionic Conductivity in Lithium Copper Pyroborate Li
    Strauss F; Rousse G; Alves Dalla Corte D; Giacobbe C; Dominko R; Tarascon JM
    Inorg Chem; 2018 Sep; 57(18):11646-11654. PubMed ID: 30156407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN Part I: ionic conductivity and defect chemistry.
    Joos M; Conrad M; Rad A; Kaghazchi P; Bette S; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20189-20197. PubMed ID: 35971978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li
    Dietrich C; Weber DA; Culver S; Senyshyn A; Sedlmaier SJ; Indris S; Janek J; Zeier WG
    Inorg Chem; 2017 Jun; 56(11):6681-6687. PubMed ID: 28485931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Lithium-Ion Diffusion and Activation Energy of Li
    Yang S; Yan B; Wu J; Lu L; Zeng K
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):13999-14005. PubMed ID: 28388026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion Dynamics in Ionic-Liquid-Based Li-Ion Electrolytes Investigated by Neutron Scattering and Dielectric Spectroscopy.
    Jafta CJ; Bridges C; Haupt L; Do C; Sippel P; Cochran MJ; Krohns S; Ohl M; Loidl A; Mamontov E; Lunkenheimer P; Dai S; Sun XG
    ChemSusChem; 2018 Oct; 11(19):3512-3523. PubMed ID: 30133183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.