BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31714190)

  • 1. Three-dimensional Deep Convolutional Neural Networks for Automated Myocardial Scar Quantification in Hypertrophic Cardiomyopathy: A Multicenter Multivendor Study.
    Fahmy AS; Neisius U; Chan RH; Rowin EJ; Manning WJ; Maron MS; Nezafat R
    Radiology; 2020 Jan; 294(1):52-60. PubMed ID: 31714190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Quantification of Myocardium Scar in Late Gadolinium Enhancement Images: Deep Learning Based Image Fusion Approach.
    Fahmy AS; Rowin EJ; Chan RH; Manning WJ; Maron MS; Nezafat R
    J Magn Reson Imaging; 2021 Jul; 54(1):303-312. PubMed ID: 33599043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net).
    Zabihollahy F; Rajchl M; White JA; Ukwatta E
    Med Phys; 2020 Apr; 47(4):1645-1655. PubMed ID: 31955415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar.
    Foley JRJ; Fent GJ; Garg P; Broadbent DA; Dobson LE; Chew PG; Brown LAE; Swoboda PP; Plein S; Higgins DM; Greenwood JP
    J Magn Reson Imaging; 2019 May; 49(5):1437-1445. PubMed ID: 30597661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved border sharpness of post-infarct scar by a novel self-navigated free-breathing high-resolution 3D whole-heart inversion recovery magnetic resonance approach.
    Rutz T; Piccini D; Coppo S; Chaptinel J; Ginami G; Vincenti G; Stuber M; Schwitter J
    Int J Cardiovasc Imaging; 2016 Dec; 32(12):1735-1744. PubMed ID: 27549804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution 3-dimensional late gadolinium enhancement scar imaging in surgically corrected Tetralogy of Fallot: clinical feasibility of volumetric quantification and visualization.
    Stirrat J; Rajchl M; Bergin L; Patton DJ; Peters T; White JA
    J Cardiovasc Magn Reson; 2014 Oct; 16(1):76. PubMed ID: 25315164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance.
    Flett AS; Hasleton J; Cook C; Hausenloy D; Quarta G; Ariti C; Muthurangu V; Moon JC
    JACC Cardiovasc Imaging; 2011 Feb; 4(2):150-6. PubMed ID: 21329899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of semi-automated scar quantification techniques using high-resolution, 3-dimensional late-gadolinium-enhancement magnetic resonance imaging.
    Rajchl M; Stirrat J; Goubran M; Yu J; Scholl D; Peters TM; White JA
    Int J Cardiovasc Imaging; 2015 Feb; 31(2):349-57. PubMed ID: 25307896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy.
    Mikami Y; Kolman L; Joncas SX; Stirrat J; Scholl D; Rajchl M; Lydell CP; Weeks SG; Howarth AG; White JA
    J Cardiovasc Magn Reson; 2014 Oct; 16(1):85. PubMed ID: 25315701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of 3D phase-sensitive inversion-recovery and 2D inversion-recovery MRI at 3.0 T for the assessment of late gadolinium enhancement in patients with hypertrophic cardiomyopathy.
    Morita K; Utsunomiya D; Oda S; Komi M; Namimoto T; Hirai T; Hashida M; Takashio S; Yamamuro M; Yamashita Y
    Acad Radiol; 2013 Jun; 20(6):752-7. PubMed ID: 23473721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cine and late gadolinium enhancement MRI registration and automated myocardial infarct heterogeneity quantification.
    Guo F; Krahn PRP; Escartin T; Roifman I; Wright G
    Magn Reson Med; 2021 May; 85(5):2842-2855. PubMed ID: 33226667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretable machine learning for automated left ventricular scar quantification in hypertrophic cardiomyopathy patients.
    Navidi Z; Sun J; Chan RH; Hanneman K; Al-Arnawoot A; Munim A; Rakowski H; Maron MS; Woo A; Wang B; Tsang W
    PLOS Digit Health; 2023 Jan; 2(1):e0000159. PubMed ID: 36812626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of left ventricular myocardial scar in coronary artery disease by a three-dimensional MR imaging technique.
    Yin G; Zhao S; Lu M; Ma N; Zuehlsdorff S; Cheng H; Jiang S; Zhao T; Zhang Y; An J; Lv C; He Z
    J Magn Reson Imaging; 2013 Jul; 38(1):72-9. PubMed ID: 23225643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular volume-guided late gadolinium enhancement analysis for non-ischemic cardiomyopathy: The Women's Interagency HIV Study.
    Kato Y; Kizer JR; Ostovaneh MR; Lazar J; Peng Q; van der Geest RJ; Lima JAC; Ambale-Venkatesh B
    BMC Med Imaging; 2021 Jul; 21(1):116. PubMed ID: 34315432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality.
    Bizino MB; Tao Q; Amersfoort J; Siebelink HJ; van den Bogaard PJ; van der Geest RJ; Lamb HJ
    Eur Radiol; 2018 Sep; 28(9):4027-4035. PubMed ID: 29626239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study.
    Tao Q; Yan W; Wang Y; Paiman EHM; Shamonin DP; Garg P; Plein S; Huang L; Xia L; Sramko M; Tintera J; de Roos A; Lamb HJ; van der Geest RJ
    Radiology; 2019 Jan; 290(1):81-88. PubMed ID: 30299231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascaded Triplanar Autoencoder M-Net for Fully Automatic Segmentation of Left Ventricle Myocardial Scar From Three-Dimensional Late Gadolinium-Enhanced MR Images.
    Lin M; Jiang M; Zhao M; Ukwatta E; White JA; Chiu B
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2582-2593. PubMed ID: 35077377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.