BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31714563)

  • 1. Exceptional high thermal conductivity of inter-connected annular graphite structures.
    Zhuang S; Zhang F; Liu Y; Lu C
    Phys Chem Chem Phys; 2019 Dec; 21(45):25495-25505. PubMed ID: 31714563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation.
    Qian X; Gu X; Dresselhaus MS; Yang R
    J Phys Chem Lett; 2016 Nov; 7(22):4744-4750. PubMed ID: 27806567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.
    Meng X; Pan H; Zhu C; Chen Z; Lu T; Xu D; Li Y; Zhu S
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22611-22622. PubMed ID: 29888597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene.
    Mohammadi R; Ghaderi MR; Hajian E
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene/Graphitized Polydopamine/Carbon Nanotube All-Carbon Ternary Composite Films with Improved Mechanical Properties and Through-Plane Thermal Conductivity.
    Zou R; Liu F; Hu N; Ning H; Gong Y; Wang S; Huang K; Jiang X; Xu C; Fu S; Li Y; Yan C
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57391-57400. PubMed ID: 33301313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transport properties of graphite carbon nitride.
    Song J; Xu Z; Tang L; Miao L; Cai C; Bai Y; Wang R; He X
    Phys Chem Chem Phys; 2020 Oct; 22(39):22785-22795. PubMed ID: 33021287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites.
    Li M; Liu J; Pan S; Zhang J; Liu Y; Liu J; Lu H
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27476-27484. PubMed ID: 32432449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.
    Firkowska I; Boden A; Boerner B; Reich S
    Nano Lett; 2015 Jul; 15(7):4745-51. PubMed ID: 26083322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure.
    Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z
    Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.
    Mortazavi B; Pötschke M; Cuniberti G
    Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductance bottleneck of a three dimensional graphene-CNT hybrid structure: a molecular dynamics simulation.
    Yu Z; Feng Y; Feng D; Zhang X
    Phys Chem Chem Phys; 2019 Dec; 22(1):337-343. PubMed ID: 31815266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of thermal transport in pillared-graphene architectures.
    Varshney V; Patnaik SS; Roy AK; Froudakis G; Farmer BL
    ACS Nano; 2010 Feb; 4(2):1153-61. PubMed ID: 20112924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defects boost graphitization for highly conductive graphene films.
    Zhang Q; Wei Q; Huang K; Liu Z; Ma W; Zhang Z; Zhang Y; Cheng HM; Ren W
    Natl Sci Rev; 2023 Jul; 10(7):nwad147. PubMed ID: 37416318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.
    Zhang J; Shi G; Jiang C; Ju S; Jiang D
    Small; 2015 Dec; 11(46):6197-204. PubMed ID: 26476622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ball-Milled Recycled Lead-Graphite Pencils as Highly Stretchable and Low-Cost Thermal-Interface Materials.
    Liao CA; Kwan YK; Chang TC; Fuh YK
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of reduced graphene oxide/carbon nanotube hybrid papers on cross-plane thermal and mechanical properties.
    Yang Y; Shen H; Yang J; Gao K; Wang Z; Sun L
    RSC Adv; 2022 Jun; 12(30):19144-19153. PubMed ID: 35865578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stitching Graphene Sheets with Graphitic Carbon Nitride: Constructing a Highly Thermally Conductive rGO/g-C
    Wang Y; Zhang X; Ding X; Li Y; Wu B; Zhang P; Zeng X; Zhang Q; Du Y; Gong Y; Zheng K; Tian X
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6699-6709. PubMed ID: 33523647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting.
    Wu S; Li T; Tong Z; Chao J; Zhai T; Xu J; Yan T; Wu M; Xu Z; Bao H; Deng T; Wang R
    Adv Mater; 2019 Dec; 31(49):e1905099. PubMed ID: 31621971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.