BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31714612)

  • 1. Comparative spatial lipidomics analysis reveals cellular lipid remodelling in different developmental zones of barley roots in response to salinity.
    Sarabia LD; Boughton BA; Rupasinghe T; Callahan DL; Hill CB; Roessner U
    Plant Cell Environ; 2020 Feb; 43(2):327-343. PubMed ID: 31714612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress.
    Sarabia LD; Boughton BA; Rupasinghe T; van de Meene AML; Callahan DL; Hill CB; Roessner U
    Metabolomics; 2018; 14(5):63. PubMed ID: 29681790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms.
    Ho WWH; Hill CB; Doblin MS; Shelden MC; van de Meene A; Rupasinghe T; Bacic A; Roessner U
    Plant Commun; 2020 May; 1(3):100031. PubMed ID: 33367236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress.
    Shelden MC; Dias DA; Jayasinghe NS; Bacic A; Roessner U
    J Exp Bot; 2016 Jun; 67(12):3731-45. PubMed ID: 26946124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-Temporal Metabolite and Elemental Profiling of Salt Stressed Barley Seeds During Initial Stages of Germination by MALDI-MSI and ยต-XRF Spectrometry.
    Gupta S; Rupasinghe T; Callahan DL; Natera SHA; Smith PMC; Hill CB; Roessner U; Boughton BA
    Front Plant Sci; 2019; 10():1139. PubMed ID: 31608088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights Into Oxidized Lipid Modification in Barley Roots as an Adaptation Mechanism to Salinity Stress.
    Yu D; Boughton BA; Hill CB; Feussner I; Roessner U; Rupasinghe TWT
    Front Plant Sci; 2020; 11():1. PubMed ID: 32117356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of proteins associated with ion homeostasis and salt tolerance in barley.
    Wu D; Shen Q; Qiu L; Han Y; Ye L; Jabeen Z; Shu Q; Zhang G
    Proteomics; 2014 Jun; 14(11):1381-92. PubMed ID: 24616274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Proteomics Unravels the Differences in Salt Stress Response of Own-Rooted and 110R-Grafted Thompson Seedless Grapevines.
    Patil S; Shinde M; Prashant R; Kadoo N; Upadhyay A; Gupta V
    J Proteome Res; 2020 Feb; 19(2):583-599. PubMed ID: 31808345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation Strategies of Halophytic Barley
    Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue metabolic responses to salt stress in wild and cultivated barley.
    Wu D; Cai S; Chen M; Ye L; Chen Z; Zhang H; Dai F; Wu F; Zhang G
    PLoS One; 2013; 8(1):e55431. PubMed ID: 23383190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Jacalin-Related Lectin HvHorcH Is Involved in the Physiological Response of Barley Roots to Salt Stress.
    Witzel K; Matros A; Bertsch U; Aftab T; Rutten T; Ramireddy E; Melzer M; Kunze G; Mock HP
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development.
    Kehelpannala C; Rupasinghe T; Pasha A; Esteban E; Hennessy T; Bradley D; Ebert B; Provart NJ; Roessner U
    Plant J; 2021 Jul; 107(1):287-302. PubMed ID: 33866624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley.
    Adem GD; Roy SJ; Zhou M; Bowman JP; Shabala S
    BMC Plant Biol; 2014 Apr; 14():113. PubMed ID: 24774965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A laser ablation technique maps differences in elemental composition in roots of two barley cultivars subjected to salinity stress.
    Shelden MC; Gilbert SE; Tyerman SD
    Plant J; 2020 Mar; 101(6):1462-1473. PubMed ID: 31686423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial lipidomics and metabolomics of multicellular tumor spheroids using MALDI-2 and trapped ion mobility imaging.
    Chen J; Xie P; Dai Q; Wu P; He Y; Lin Z; Cai Z
    Talanta; 2023 Dec; 265():124795. PubMed ID: 37364385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-stress induced alterations in the root lipidome of two barley genotypes with contrasting responses to salinity.
    Natera SHA; Hill CB; Rupasinghe TWT; Roessner U
    Funct Plant Biol; 2016 Mar; 43(2):207-219. PubMed ID: 32480454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Analysis of the Plant Lipidome by UPLC-NanoESI-MS/MS.
    Herrfurth C; Liu YT; Feussner I
    Methods Mol Biol; 2021; 2295():135-155. PubMed ID: 34047976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Mechanisms of Salinity Tolerance in Barley by Proteomic and Biochemical Analysis of Near-Isogenic Lines.
    Zhu J; Fan Y; Shabala S; Li C; Lv C; Guo B; Xu R; Zhou M
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface analysis of lipids by mass spectrometry: more than just imaging.
    Ellis SR; Brown SH; In Het Panhuis M; Blanksby SJ; Mitchell TW
    Prog Lipid Res; 2013 Oct; 52(4):329-53. PubMed ID: 23623802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphophysiological and Comparative Metabolic Profiling of Purslane Genotypes (
    Zaman S; Bilal M; Du H; Che S
    Biomed Res Int; 2020; 2020():4827045. PubMed ID: 32685490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.