These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 31714732)
21. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. Meng F; He A; Zhang Z; Zhang Z; Lin Z; Yang Z; Long Y; Wu G; Kang Y; Liao W J Biomed Mater Res A; 2014 Aug; 102(8):2725-35. PubMed ID: 24026971 [TBL] [Abstract][Full Text] [Related]
22. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Pelaez D; Huang CY; Cheung HS Stem Cells Dev; 2009; 18(1):93-102. PubMed ID: 18399763 [TBL] [Abstract][Full Text] [Related]
23. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. Wang L; Zhao L; Detamore MS J Tissue Eng Regen Med; 2011 Oct; 5(9):712-21. PubMed ID: 21953869 [TBL] [Abstract][Full Text] [Related]
24. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask. Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021 [TBL] [Abstract][Full Text] [Related]
25. Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Rodrigues MT; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ Acta Biomater; 2012 Jul; 8(7):2795-806. PubMed ID: 22510402 [TBL] [Abstract][Full Text] [Related]
26. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Zhang N; Wang Y; Zhang J; Guo J; He J Acta Biomater; 2021 Nov; 135():304-317. PubMed ID: 34454084 [TBL] [Abstract][Full Text] [Related]
27. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel. Aziz AH; Eckstein K; Ferguson VL; Bryant SJ J Tissue Eng Regen Med; 2019 Jun; 13(6):946-959. PubMed ID: 30793536 [TBL] [Abstract][Full Text] [Related]
28. Influence of hydrodynamic pressure on chondrogenic differentiation of human bone marrow mesenchymal stem cells cultured in perfusion system. Zamanlui S; Amirabad LM; Soleimani M; Faghihi S Biologicals; 2018 Nov; 56():1-8. PubMed ID: 30177432 [TBL] [Abstract][Full Text] [Related]
30. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590 [TBL] [Abstract][Full Text] [Related]
31. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source. Mellor LF; Mohiti-Asli M; Williams J; Kannan A; Dent MR; Guilak F; Loboa EG Tissue Eng Part A; 2015 Sep; 21(17-18):2323-33. PubMed ID: 26035347 [TBL] [Abstract][Full Text] [Related]
32. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration. Deng X; Chen X; Geng F; Tang X; Li Z; Zhang J; Wang Y; Wang F; Zheng N; Wang P; Yu X; Hou S; Zhang W J Nanobiotechnology; 2021 Dec; 19(1):400. PubMed ID: 34856996 [TBL] [Abstract][Full Text] [Related]
33. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Dormer NH; Singh M; Wang L; Berkland CJ; Detamore MS Ann Biomed Eng; 2010 Jun; 38(6):2167-82. PubMed ID: 20379780 [TBL] [Abstract][Full Text] [Related]
34. Development of novel three-dimensional printed scaffolds for osteochondral regeneration. Holmes B; Zhu W; Li J; Lee JD; Zhang LG Tissue Eng Part A; 2015 Jan; 21(1-2):403-15. PubMed ID: 25088966 [TBL] [Abstract][Full Text] [Related]
35. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Nam J; Johnson J; Lannutti JJ; Agarwal S Acta Biomater; 2011 Apr; 7(4):1516-24. PubMed ID: 21109030 [TBL] [Abstract][Full Text] [Related]
36. [Experimental study of tissue engineered cartilage construction using oriented scaffold combined with bone marrow mesenchymal stem cells in vivo]. Duan W; Da H; Wang W; Lü S; Xiong Z; Liu J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):513-9. PubMed ID: 23879085 [TBL] [Abstract][Full Text] [Related]
37. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254 [TBL] [Abstract][Full Text] [Related]
38. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations. Sartori M; Pagani S; Ferrari A; Costa V; Carina V; Figallo E; Maltarello MC; Martini L; Fini M; Giavaresi G Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):101-111. PubMed ID: 27770869 [TBL] [Abstract][Full Text] [Related]
39. Covalent Binding of Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 to 3D Plotted Scaffolds for Osteochondral Tissue Regeneration. Di Luca A; Klein-Gunnewiek M; Vancso JG; van Blitterswijk CA; Benetti EM; Moroni L Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28865136 [TBL] [Abstract][Full Text] [Related]