These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 31714746)

  • 1. Molecular Control of Heterogeneous Electrocatalysis through Graphite Conjugation.
    Jackson MN; Surendranath Y
    Acc Chem Res; 2019 Dec; 52(12):3432-3441. PubMed ID: 31714746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Electronic Coupling of Molecular Sites to Graphitic Electrodes via Pyrazine Conjugation.
    Jackson MN; Oh S; Kaminsky CJ; Chu SB; Zhang G; Miller JT; Surendranath Y
    J Am Chem Soc; 2018 Jan; 140(3):1004-1010. PubMed ID: 29216428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Field-Driven Proton-Coupled Electron Transfer at Graphite-Conjugated Organic Acids.
    Warburton RE; Hutchison P; Jackson MN; Pegis ML; Surendranath Y; Hammes-Schiffer S
    J Am Chem Soc; 2020 Dec; 142(49):20855-20864. PubMed ID: 33231443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis.
    Jackson MN; Kaminsky CJ; Oh S; Melville JF; Surendranath Y
    J Am Chem Soc; 2019 Sep; 141(36):14160-14167. PubMed ID: 31353897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts.
    Fukushima T; Drisdell W; Yano J; Surendranath Y
    J Am Chem Soc; 2015 Sep; 137(34):10926-9. PubMed ID: 26292719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction.
    Oh S; Gallagher JR; Miller JT; Surendranath Y
    J Am Chem Soc; 2016 Feb; 138(6):1820-3. PubMed ID: 26804469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Electrons and Protons through Theory: Molecular Electrocatalysts to Nanoparticles.
    Hammes-Schiffer S
    Acc Chem Res; 2018 Sep; 51(9):1975-1983. PubMed ID: 30110147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production.
    Kim JH; Sa YJ; Lim T; Woo J; Joo SH
    Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Electronic Descriptor and Proton-Coupled Electron Transfer Thermodynamics in Doped Graphite-Conjugated Catalysts.
    Hutchison P; Warburton RE; Surendranath Y; Hammes-Schiffer S
    J Phys Chem Lett; 2022 Dec; 13(48):11216-11222. PubMed ID: 36445816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphite-Conjugated Acids Reveal a Molecular Framework for Proton-Coupled Electron Transfer at Electrode Surfaces.
    Jackson MN; Pegis ML; Surendranath Y
    ACS Cent Sci; 2019 May; 5(5):831-841. PubMed ID: 31139719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst.
    Tao L; Qiao M; Jin R; Li Y; Xiao Z; Wang Y; Zhang N; Xie C; He Q; Jiang D; Yu G; Li Y; Wang S
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1019-1024. PubMed ID: 30479055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery.
    Siu JC; Fu N; Lin S
    Acc Chem Res; 2020 Mar; 53(3):547-560. PubMed ID: 32077681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO
    Wu Y; Liang Y; Wang H
    Acc Chem Res; 2021 Aug; ():. PubMed ID: 34347429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO
    Soucy TL; Dean WS; Zhou J; Rivera Cruz KE; McCrory CCL
    Acc Chem Res; 2022 Feb; 55(3):252-261. PubMed ID: 35044745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.