These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31714775)

  • 1. Pyrolysis of Furan and Its Methylated Derivatives: A Shock-Tube/TOF-MS and Modeling Study.
    Weiser L; Weber I; Olzmann M
    J Phys Chem A; 2019 Nov; 123(46):9893-9904. PubMed ID: 31714775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H-Atom-Forming Reaction Pathways in the Pyrolysis of Furan, 2-Methylfuran, and 2,5-Dimethylfuran: A Shock-Tube and Modeling Study.
    Weber I; Friese P; Olzmann M
    J Phys Chem A; 2018 Aug; 122(32):6500-6508. PubMed ID: 30036056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of Methyl Formate and the Reaction of Methyl Formate with H Atoms: Shock Tube Experiments and Statistical Rate Theory.
    Wenz J; Pazdera TM; Golka L; Olzmann M
    J Phys Chem A; 2023 Feb; 127(4):1036-1045. PubMed ID: 36683280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran.
    Tran LS; Togbé C; Liu D; Felsmann D; Oßwald P; Glaude PA; Fournet R; Sirjean B; Battin-Leclerc F; Kohse-Höinghaus K
    Combust Flame; 2014 Mar; 161(3):766-779. PubMed ID: 24518895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate Coefficients for the Gas-Phase Reactions of Nitrate Radicals with a Series of Furan Compounds.
    Al Ali F; Coeur C; Houzel N; Bouya H; Tomas A; Romanias MN
    J Phys Chem A; 2022 Nov; 126(46):8674-8681. PubMed ID: 36350348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part I: Furan.
    Liu D; Togbé C; Tran LS; Felsmann D; Oßwald P; Nau P; Koppmann J; Lackner A; Glaude PA; Sirjean B; Fournet R; Battin-Leclerc F; Kohse-Höinghaus K
    Combust Flame; 2014 Mar; 161(3):748-765. PubMed ID: 24518999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part III: 2,5-Dimethylfuran.
    Togbé C; Tran LS; Liu D; Felsmann D; Oßwald P; Glaude PA; Sirjean B; Fournet R; Battin-Leclerc F; Kohse-Höinghaus K
    Combust Flame; 2014 Mar; 161(3):780-797. PubMed ID: 24518851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Measurement of High-Temperature Rate Constants of the Thermal Decomposition of Dimethoxymethane, a Shock Tube and Modeling Study.
    Peukert S; Sela P; Nativel D; Herzler J; Fikri M; Schulz C
    J Phys Chem A; 2018 Sep; 122(38):7559-7571. PubMed ID: 30165025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and modeling study of carbon suboxide decomposition behind reflected shock waves.
    Aghsaee M; Böhm H; Dürrstein SH; Fikri M; Schulz C
    Phys Chem Chem Phys; 2012 Jan; 14(3):1246-52. PubMed ID: 22139398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.
    Sirjean B; Fournet R; Glaude PA; Battin-Leclerc F; Wang W; Oehlschlaeger MA
    J Phys Chem A; 2013 Feb; 117(7):1371-92. PubMed ID: 23327724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study.
    Somers KP; Simmie JM; Metcalfe WK; Curran HJ
    Phys Chem Chem Phys; 2014 Mar; 16(11):5349-67. PubMed ID: 24496403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High pressure pyrolysis of toluene. 1. Experiments and modeling of toluene decomposition.
    Sivaramakrishnan R; Tranter RS; Brezinsky K
    J Phys Chem A; 2006 Aug; 110(30):9388-99. PubMed ID: 16869688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry.
    Lynch PT; Troy TP; Ahmed M; Tranter RS
    Anal Chem; 2015 Feb; 87(4):2345-52. PubMed ID: 25594229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.
    Sela P; Peukert S; Herzler J; Fikri M; Schulz C
    Phys Chem Chem Phys; 2018 Apr; 20(16):10686-10696. PubMed ID: 29302654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.
    Peukert SL; Michael JV
    J Phys Chem A; 2013 Oct; 117(40):10186-95. PubMed ID: 23968550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation and modeling of the kinetics of CCl4 pyrolysis behind reflected shock waves using high-repetition-rate time-of-flight mass spectrometry.
    Aghsaee M; Drakon A; Eremin A; Dürrstein SH; Böhm H; Somnitz H; Fikri M; Schulz C
    Phys Chem Chem Phys; 2013 Feb; 15(8):2821-8. PubMed ID: 23338791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temperature shock tube studies on the thermal decomposition of O3 and the reaction of dimethyl carbonate with O-atoms.
    Peukert SL; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 May; 117(18):3729-38. PubMed ID: 23510082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental and kinetic investigation of premixed furan/oxygen/argon flames.
    Tian Z; Yuan T; Fournet R; Glaude PA; Sirjean B; Battin-Leclerc F; Zhang K; Qi F
    Combust Flame; 2011 Apr; 158(4):756-773. PubMed ID: 23814311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Methanol and Butanol on Soot Formation in Gasoline Surrogate Pyrolysis: A Shock-Tube Study.
    Nativel D; Shao C; Cooper SP; Petersen EL; Schulz C; Fikri M; Peukert S
    J Phys Chem A; 2023 Feb; 127(5):1259-1270. PubMed ID: 36706050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ring-opening channel and the influence of Rydberg states on the excited state dynamics of furan and its derivatives.
    Schalk O; Geng T; Hansson T; Thomas RD
    J Chem Phys; 2018 Aug; 149(8):084303. PubMed ID: 30193494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.