These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31714785)

  • 1. A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface.
    Budi A; Walsh TR
    Langmuir; 2019 Dec; 35(49):16234-16243. PubMed ID: 31714785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic Interfacial Force Field for Interfaces of Water with Hexagonal Boron Nitride.
    Feng Z; Lei Z; Yao Y; Liu J; Wu B; Ouyang W
    Langmuir; 2023 Dec; 39(50):18198-18207. PubMed ID: 38063463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold.
    Hughes ZE; Wright LB; Walsh TR
    Langmuir; 2013 Oct; 29(43):13217-29. PubMed ID: 24079907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective manipulation of peptide orientation on hexagonal boron nitride nanosheets.
    Brljak N; Jin R; Walsh TR; Knecht MR
    Nanoscale; 2021 Mar; 13(11):5670-5678. PubMed ID: 33725079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates.
    Behura S; Nguyen P; Debbarma R; Che S; Seacrist MR; Berry V
    ACS Nano; 2017 May; 11(5):4985-4994. PubMed ID: 28441003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.
    Walsh TR
    Acc Chem Res; 2017 Jul; 50(7):1617-1624. PubMed ID: 28665581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrugation in the Weakly Interacting Hexagonal-BN/Cu(111) System: Structure Determination by Combining Noncontact Atomic Force Microscopy and X-ray Standing Waves.
    Schwarz M; Riss A; Garnica M; Ducke J; Deimel PS; Duncan DA; Thakur PK; Lee TL; Seitsonen AP; Barth JV; Allegretti F; Auwärter W
    ACS Nano; 2017 Sep; 11(9):9151-9161. PubMed ID: 28872822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Fracture of H-BN and Graphene by Neural Network Force Fields.
    Pengjie S; Xu Z
    J Phys Condens Matter; 2024 Jun; ():. PubMed ID: 38925133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating a Nanospace under an h-BN Cover for Adlayer Growth on Nickel(111).
    Yang Y; Fu Q; Li H; Wei M; Xiao J; Wei W; Bao X
    ACS Nano; 2015 Dec; 9(12):11589-98. PubMed ID: 26446350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model.
    Hughes ZE; Tomásio SM; Walsh TR
    Nanoscale; 2014 May; 6(10):5438-48. PubMed ID: 24722915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion of Epoxy Resin with Hexagonal Boron Nitride and Graphite.
    Tsuji Y; Kitamura Y; Someya M; Takano T; Yaginuma M; Nakanishi K; Yoshizawa K
    ACS Omega; 2019 Mar; 4(3):4491-4504. PubMed ID: 31459644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions.
    Xu H; Wu J; Chen Y; Zhang H; Zhang J
    Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlayer Potential for Graphene/h-BN Heterostructures.
    Leven I; Maaravi T; Azuri I; Kronik L; Hod O
    J Chem Theory Comput; 2016 Jun; 12(6):2896-905. PubMed ID: 27168429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets.
    Verma A; Zhang W; van Duin ACT
    Phys Chem Chem Phys; 2021 May; 23(18):10822-10834. PubMed ID: 33908500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layered Graphene-Hexagonal BN Nanocomposites: Experimentally Feasible Approach to Charge-Induced Switchable CO2 Capture.
    Tan X; Kou L; Smith SC
    ChemSusChem; 2015 Sep; 8(17):2987-93. PubMed ID: 26073178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Carrier Polarity in Fowler-Nordheim Tunneling and Evidence of Fermi Level Pinning at the Hexagonal Boron Nitride/Metal Interface.
    Hattori Y; Taniguchi T; Watanabe K; Nagashio K
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11732-11738. PubMed ID: 29552882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction between hexagonal boron nitride and water from first principles.
    Wu Y; Wagner LK; Aluru NR
    J Chem Phys; 2015 Jun; 142(23):234702. PubMed ID: 26093568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophoretically driven water droplets on graphene and boron nitride surfaces.
    Rajegowda R; Kannam SK; Hartkamp R; Sathian SP
    Nanotechnology; 2018 May; 29(21):215401. PubMed ID: 29498625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscale and Nanoscale Photoelectrochemical Behavior of p-Type Si(111) Covered by a Single Layer of Graphene or Hexagonal Boron Nitride.
    Thompson AC; Simpson BH; Lewis NS
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11551-11561. PubMed ID: 32040911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking.
    Ding N; Chen X; Wu CM; Li H
    Phys Chem Chem Phys; 2013 Jul; 15(26):10767-76. PubMed ID: 23689542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.