These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31714854)

  • 1. Pan-Arctic Depth Distribution of Diapausing
    Kvile KØ; Ashjian C; Ji R
    Biol Bull; 2019 Oct; 237(2):76-89. PubMed ID: 31714854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.
    Feng Z; Ji R; Ashjian C; Campbell R; Zhang J
    Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea ice decline drives biogeographical shifts of key Calanus species in the central Arctic Ocean.
    Ershova EA; Kosobokova KN; Banas NS; Ellingsen I; Niehoff B; Hildebrandt N; Hirche HJ
    Glob Chang Biol; 2021 May; 27(10):2128-2143. PubMed ID: 33605011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean.
    Wang YG; Tseng LC; Lin M; Hwang JS
    PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Crude Awakening: Effects of Crude Oil on Lipid Metabolism in Calanoid Copepods Terminating Diapause.
    Skottene E; Tarrant AM; Olsen AJ; Altin D; Hansen BH; Choquet M; Olsen RE; Jenssen BM
    Biol Bull; 2019 Oct; 237(2):90-110. PubMed ID: 31714858
    [No Abstract]   [Full Text] [Related]  

  • 6. Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations.
    Kvile KØ; Ashjian C; Feng Z; Zhang J; Ji R
    Glob Chang Biol; 2018 Nov; 24(11):5426-5439. PubMed ID: 30099832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.
    Wilson RJ; Banas NS; Heath MR; Speirs DC
    Glob Chang Biol; 2016 Oct; 22(10):3332-40. PubMed ID: 26990351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ingestion and impact of microplastics on arctic Calanus copepods.
    Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG
    Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of Arctic zooplankton seasonal migrations for α-hexachlorocyclohexane bioaccumulation dynamics.
    Pućko M; Walkusz W; Macdonald RW; Barber DG; Fuchs C; Stern GA
    Environ Sci Technol; 2013 May; 47(9):4155-63. PubMed ID: 23570325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Pyrene Exposure during Overwintering of the Arctic Copepod Calanus glacialis.
    Toxværd K; Van Dinh K; Henriksen O; Hjorth M; Nielsen TG
    Environ Sci Technol; 2018 Sep; 52(18):10328-10336. PubMed ID: 30130096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions.
    Weydmann A; Przyłucka A; Lubośny M; Walczyńska KS; Serrão EA; Pearson GA; Burzyński A
    Sci Rep; 2017 Oct; 7(1):13702. PubMed ID: 29057900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus.
    Toxværd K; Dinh KV; Henriksen O; Hjorth M; Nielsen TG
    Aquat Toxicol; 2019 Dec; 217():105332. PubMed ID: 31698182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term effects of elevated CO₂ and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus.
    Hildebrandt N; Niehoff B; Sartoris FJ
    Mar Pollut Bull; 2014 Mar; 80(1-2):59-70. PubMed ID: 24529340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics redraws pelagic biogeography of
    Choquet M; Hatlebakk M; Dhanasiri AKS; Kosobokova K; Smolina I; Søreide JE; Svensen C; Melle W; Kwaśniewski S; Eiane K; Daase M; Tverberg V; Skreslet S; Bucklin A; Hoarau G
    Biol Lett; 2017 Dec; 13(12):. PubMed ID: 29263132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of petrogenic pollutants on North Atlantic and Arctic Calanus copepods: From molecular mechanisms to population impacts.
    Hansen BH; Tarrant AM; Lenz PH; Roncalli V; Almeda R; Broch OJ; Altin D; Tollefsen KE
    Aquat Toxicol; 2024 Feb; 267():106825. PubMed ID: 38176169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene.
    Yadetie F; Brun NR; Giebichenstein J; Dmoch K; Hylland K; Borgå K; Karlsen OA; Goksøyr A
    Mar Genomics; 2022 Oct; 65():100981. PubMed ID: 35969942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid metabolism in Calanus finmarchicus is sensitive to variations in predation risk and food availability.
    Skottene E; Tarrant AM; Altin D; Olsen RE; Choquet M; Kvile KØ
    Sci Rep; 2020 Dec; 10(1):22322. PubMed ID: 33339843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicological investigation of the effect of accumulation of PAH and possible impact of dispersant in resting high arctic copepod Calanus hyperboreus.
    Nørregaard RD; Gustavson K; Møller EF; Strand J; Tairova Z; Mosbech A
    Aquat Toxicol; 2015 Oct; 167():1-11. PubMed ID: 26253790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccumulation of oil compounds in the high-Arctic copepod Calanus hyperboreus.
    Agersted MD; Møller EF; Gustavson K
    Aquat Toxicol; 2018 Feb; 195():8-14. PubMed ID: 29220691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspecific differences in lipid content of calanoid copepods across fine-scale depth ranges within the photic layer.
    Zarubin M; Farstey V; Wold A; Falk-Petersen S; Genin A
    PLoS One; 2014; 9(3):e92935. PubMed ID: 24667529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.