These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31714860)

  • 1. Facing Adversity: Dormant Embryos in Rotifers.
    García-Roger EM; Lubzens E; Fontaneto D; Serra M
    Biol Bull; 2019 Oct; 237(2):119-144. PubMed ID: 31714860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production.
    Hanson SJ; Stelzer CP; Welch DB; Logsdon JM
    BMC Genomics; 2013 Jun; 14():412. PubMed ID: 23782598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis.
    Denekamp NY; Thorne MA; Clark MS; Kube M; Reinhardt R; Lubzens E
    BMC Genomics; 2009 Mar; 10():108. PubMed ID: 19284654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid evolution of sex frequency and dormancy as hydroperiod adaptations.
    Smith HA; Snell TW
    J Evol Biol; 2012 Dec; 25(12):2501-10. PubMed ID: 22994805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of dormancy to protect diversity: Decrease in diversity of active zooplankton community observed in lake with depauperate egg bank.
    Patterson LN; Harris BD; Covi JA
    Sci Total Environ; 2020 Jun; 723():138074. PubMed ID: 32392683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of nuclear receptor (NR) genes and the evolutionary significance of the NR1O subfamily in the monogonont rotifer Brachionus spp.
    Kim DH; Kim HS; Hwang DS; Kim HJ; Hagiwara A; Lee JS; Jeong CB
    Gen Comp Endocrinol; 2017 Oct; 252():219-225. PubMed ID: 28673513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos.
    Rozema E; Kierszniowska S; Almog-Gabai O; Wilson EG; Choi YH; Verpoorte R; Hamo R; Chalifa-Caspi V; Assaraf YG; Lubzens E
    Sci Rep; 2019 Jun; 9(1):8878. PubMed ID: 31222034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dormancy in Embryos: Insight from Hydrated Encysted Embryos of an Aquatic Invertebrate.
    Ziv T; Chalifa-Caspi V; Denekamp N; Plaschkes I; Kierszniowska S; Blais I; Admon A; Lubzens E
    Mol Cell Proteomics; 2017 Oct; 16(10):1746-1769. PubMed ID: 28729386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late embryogenesis abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers.
    Denekamp NY; Reinhardt R; Kube M; Lubzens E
    Biol Reprod; 2010 Apr; 82(4):714-24. PubMed ID: 20018906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-distance passive dispersal in microscopic aquatic animals.
    Fontaneto D
    Mov Ecol; 2019; 7():10. PubMed ID: 30962931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pollution on dormant-stage banks of cladocerans and rotifers in a large tropical reservoir.
    Coelho PN; Paes TASV; Maia-Barbosa PM; Dos Santos-Wisniewski MJ
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):30887-30897. PubMed ID: 33594550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spliced leader RNA-mediated trans-splicing in phylum Rotifera.
    Pouchkina-Stantcheva NN; Tunnacliffe A
    Mol Biol Evol; 2005 Jun; 22(6):1482-9. PubMed ID: 15788744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monogonont Rotifer, Brachionus calyciflorus, Possesses Exceptionally Large, Fragmented Mitogenome.
    Nie ZJ; Gu RB; Du FK; Shao NL; Xu P; Xu GC
    PLoS One; 2016; 11(12):e0168263. PubMed ID: 27959933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy.
    Fontaneto D; Kaya M; Herniou EA; Barraclough TG
    Mol Phylogenet Evol; 2009 Oct; 53(1):182-9. PubMed ID: 19398026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species.
    Caprioli M; Krabbe Katholm A; Melone G; Ramløv H; Ricci C; Santo N
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Dec; 139(4):527-32. PubMed ID: 15596399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evidence for Acanthocephala as a subtaxon of Rotifera.
    Garey JR; Near TJ; Nonnemacher MR; Nadler SA
    J Mol Evol; 1996 Sep; 43(3):287-92. PubMed ID: 8703095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA barcoding of freshwater rotifera in Mexico: evidence of cryptic speciation in common rotifers.
    García-Morales AE; Elías-Gutiérrez M
    Mol Ecol Resour; 2013 Nov; 13(6):1097-107. PubMed ID: 23433240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zooplankton competition promotes trade-offs affecting diapause in rotifers.
    Aránguiz-Acuña A; Ramos-Jiliberto R; Serra M
    Oecologia; 2015 Jan; 177(1):273-9. PubMed ID: 25464990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress and fitness in parthenogens: is dormancy a key feature for bdelloid rotifers?
    Ricci C; Caprioli M; Fontaneto D
    BMC Evol Biol; 2007 Aug; 7 Suppl 2(Suppl 2):S9. PubMed ID: 17767737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precopulatory mate guarding and mating behaviour in the rotifer Epiphanes senta (Monogononta: Rotifera).
    Schröder T
    Proc Biol Sci; 2003 Sep; 270(1527):1965-70. PubMed ID: 14561311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.