These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31714919)

  • 1. Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.
    Bernardina GRD; Monnet T; Cerveri P; Silvatti AP
    PLoS One; 2019; 14(11):e0224182. PubMed ID: 31714919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    PLoS One; 2016; 11(8):e0160490. PubMed ID: 27513846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    J Biomech; 2017 Jan; 51():77-82. PubMed ID: 27974154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous in-air and underwater 3D kinematic analysis of swimmers: Feasibility and reliability of action sport cameras.
    Bernardina GRD; de Andrade AGP; Monnet T; Cerveri P; Silvatti AP
    J Biomech; 2024 May; 168():112078. PubMed ID: 38663110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Action Sport Cameras Accurate Enough for 3D Motion Analysis? A Comparison With a Commercial Motion Capture System.
    Bernardina GRD; Monnet T; Pinto HT; de Barros RML; Cerveri P; Silvatti AP
    J Appl Biomech; 2019 Feb; 35(1):80–86. PubMed ID: 29989508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.
    Silvatti AP; Cerveri P; Telles T; Dias FA; Baroni G; Barros RM
    Comput Methods Biomech Biomed Engin; 2013; 16(11):1240-8. PubMed ID: 22435960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences.
    Krosshaug T; Bahr R
    J Biomech; 2005 Apr; 38(4):919-29. PubMed ID: 15713313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the moving fluoroscope on gait patterns.
    Hitz M; Schütz P; Angst M; Taylor WR; List R
    PLoS One; 2018; 13(7):e0200608. PubMed ID: 30005086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algorithm to correct for camera vibrations in optical motion tracking systems.
    Huber P; Cagran C; Müller W
    J Biomech; 2011 Jul; 44(11):2172-6. PubMed ID: 21640352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a single camera three-dimensional motion tracking system.
    Weinhandl JT; Armstrong BS; Kusik TP; Barrows RT; O'Connor KM
    J Biomech; 2010 May; 43(7):1437-40. PubMed ID: 20207358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system.
    Nüesch C; Roos E; Pagenstert G; Mündermann A
    J Biomech; 2017 May; 57():32-38. PubMed ID: 28366438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Markerless 2D kinematic analysis of underwater running: A deep learning approach.
    Cronin NJ; Rantalainen T; Ahtiainen JP; Hynynen E; Waller B
    J Biomech; 2019 Apr; 87():75-82. PubMed ID: 30850178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knee hyperextension does not adversely affect dynamic in vivo kinematics after anterior cruciate ligament reconstruction.
    Nagai K; Gale T; Herbst E; Tashiro Y; Irrgang JJ; Tashman S; Fu FH; Anderst W
    Knee Surg Sports Traumatol Arthrosc; 2018 Feb; 26(2):448-454. PubMed ID: 28712024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between knee walking kinematics and muscle flexibility in runners.
    Gaudreault N; Fuentes A; Mezghani N; Gauthier VO; Turcot K
    J Sport Rehabil; 2013 Nov; 22(4):279-87. PubMed ID: 23799830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of marathon running on three-dimensional knee kinematics during walking and running in recreational runners.
    Tian F; Li N; Zheng Z; Huang Q; Zhu T; Li Q; Wang W; Tsai TY; Wang S
    Gait Posture; 2020 Jan; 75():72-77. PubMed ID: 31606722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic Analysis Using 3D Motion Capture of Drinking Task in People With and Without Upper-extremity Impairments.
    Alt Murphy M; Murphy S; Persson HC; Bergström UB; Sunnerhagen KS
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29658937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An image-processing based technique to obtain instantaneous horizontal walking and running speed.
    Nagano A; Fujimoto M; Kudo S; Akaguma R
    Gait Posture; 2017 Jan; 51():7-9. PubMed ID: 27693807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in pattern of variability for lower extremity kinematics between walking and running.
    Estep A; Morrison S; Caswell S; Ambegaonkar J; Cortes N
    Gait Posture; 2018 Feb; 60():111-115. PubMed ID: 29179051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic and Kinetic Validation of an Improved Depth Camera Motion Assessment System Using Rigid Bodies.
    Matthew RP; Seko S; Bajcsy R; Lotz J
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1784-1793. PubMed ID: 30281504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.