BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 31715354)

  • 1. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery.
    Jhan YY; Prasca-Chamorro D; Palou Zuniga G; Moore DM; Arun Kumar S; Gaharwar AK; Bishop CJ
    Int J Pharm; 2020 Jan; 573():118802. PubMed ID: 31715354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery.
    Lamichhane TN; Raiker RS; Jay SM
    Mol Pharm; 2015 Oct; 12(10):3650-7. PubMed ID: 26376343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer-Coated Extracellular Vesicles for Selective Codelivery of Chemotherapeutics and siRNA to Cancer Cells.
    Jhan YY; Palou Zuniga G; Singh KA; Gaharwar AK; Alge DL; Bishop CJ
    ACS Appl Bio Mater; 2021 Feb; 4(2):1294-1306. PubMed ID: 35014481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles.
    Nasiri Kenari A; Cheng L; Hill AF
    Methods; 2020 May; 177():103-113. PubMed ID: 31917274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Extracellular Vesicles Loaded with Therapeutic Cargo.
    Lamichhane TN; Jay SM
    Methods Mol Biol; 2018; 1831():37-47. PubMed ID: 30051423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery.
    Rayamajhi S; Nguyen TDT; Marasini R; Aryal S
    Acta Biomater; 2019 Aug; 94():482-494. PubMed ID: 31129363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer.
    Lunavat TR; Jang SC; Nilsson L; Park HT; Repiska G; Lässer C; Nilsson JA; Gho YS; Lötvall J
    Biomaterials; 2016 Sep; 102():231-8. PubMed ID: 27344366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Isolation of siRNA-Loaded Extracellular Vesicles.
    Vader P; Mäger I; Lee Y; Nordin JZ; Andaloussi SE; Wood MJ
    Methods Mol Biol; 2017; 1545():197-204. PubMed ID: 27943216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles.
    Kooijmans SAA; Stremersch S; Braeckmans K; de Smedt SC; Hendrix A; Wood MJA; Schiffelers RM; Raemdonck K; Vader P
    J Control Release; 2013 Nov; 172(1):229-238. PubMed ID: 23994516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loading of "cocktail siRNAs" into extracellular vesicles via TAT-DRBD peptide for the treatment of castration-resistant prostate cancer.
    Diao Y; Wang G; Zhu B; Li Z; Wang S; Yu L; Li R; Fan W; Zhang Y; Zhou L; Yang L; Hao X; Liu J
    Cancer Biol Ther; 2022 Dec; 23(1):163-172. PubMed ID: 35171081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles.
    Chen C; Li Y; Wang Q; Cai N; Wu L; Yan X
    Anal Bioanal Chem; 2023 Mar; 415(7):1287-1298. PubMed ID: 35945289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy.
    Jiang L; Vader P; Schiffelers RM
    Gene Ther; 2017 Mar; 24(3):157-166. PubMed ID: 28140387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation.
    Zhou X; Miao Y; Wang Y; He S; Guo L; Mao J; Chen M; Yang Y; Zhang X; Gan Y
    J Extracell Vesicles; 2022 Mar; 11(3):e12198. PubMed ID: 35233952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antitumor Potential of Extracellular Vesicles Released by Genetically Modified Murine Colon Carcinoma Cells With Overexpression of Interleukin-12 and shRNA for TGF-β1.
    Rossowska J; Anger N; Wegierek K; Szczygieł A; Mierzejewska J; Milczarek M; Szermer-Olearnik B; Pajtasz-Piasecka E
    Front Immunol; 2019; 10():211. PubMed ID: 30814999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display.
    Antes TJ; Middleton RC; Luther KM; Ijichi T; Peck KA; Liu WJ; Valle J; Echavez AK; Marbán E
    J Nanobiotechnology; 2018 Aug; 16(1):61. PubMed ID: 30165851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells.
    Wan Y; Dai W; Nevagi RJ; Toth I; Moyle PM
    Acta Biomater; 2017 Sep; 59():257-268. PubMed ID: 28655658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery.
    Ingato D; Lee JU; Sim SJ; Kwon YJ
    J Control Release; 2016 Nov; 241():174-185. PubMed ID: 27667180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of Biomolecules via Extracellular Vesicles: A Budding Therapeutic Strategy.
    Stranford DM; Leonard JN
    Adv Genet; 2017; 98():155-175. PubMed ID: 28942793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression.
    Pi F; Binzel DW; Lee TJ; Li Z; Sun M; Rychahou P; Li H; Haque F; Wang S; Croce CM; Guo B; Evers BM; Guo P
    Nat Nanotechnol; 2018 Jan; 13(1):82-89. PubMed ID: 29230043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles.
    O'Loughlin AJ; Mäger I; de Jong OG; Varela MA; Schiffelers RM; El Andaloussi S; Wood MJA; Vader P
    Mol Ther; 2017 Jul; 25(7):1580-1587. PubMed ID: 28392161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.