These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31715453)

  • 1. Biomechanical musculoskeletal models of the cervical spine: A systematic literature review.
    Alizadeh M; Knapik GG; Mageswaran P; Mendel E; Bourekas E; Marras WS
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():115-124. PubMed ID: 31715453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electromyography-assisted biomechanical cervical spine model: Model development and validation.
    Alizadeh M; Aurand A; Knapik GG; Dufour JS; Mendel E; Bourekas E; Marras WS
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105169. PubMed ID: 32919360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curved muscles in biomechanical models of the spine: a systematic literature review.
    Hwang J; Knapik GG; Dufour JS; Marras WS
    Ergonomics; 2017 Apr; 60(4):577-588. PubMed ID: 27189654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An EMG-driven biomechanical model of the canine cervical spine.
    Alizadeh M; Knapik GG; Dufour JS; Zindl C; Allen MJ; Bertran J; Fitzpatrick N; Marras WS
    J Electromyogr Kinesiol; 2017 Feb; 32():101-109. PubMed ID: 28092739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cervical spine segment finite element model for traumatic injury prediction.
    DeWit JA; Cronin DS
    J Mech Behav Biomed Mater; 2012 Jun; 10():138-50. PubMed ID: 22520426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A subject-specific biomechanical control model for the prediction of cervical spine muscle forces.
    Van den Abbeele M; Li F; Pomero V; Bonneau D; Sandoz B; Laporte S; Skalli W
    Clin Biomech (Bristol, Avon); 2018 Jan; 51():58-66. PubMed ID: 29227919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of head and cervical spine injury measures to impact factors relevant to rollover crashes.
    Mattos GA; Mcintosh AS; Grzebieta RH; Yoganandan N; Pintar FA
    Traffic Inj Prev; 2015; 16 Suppl 1():S140-7. PubMed ID: 26027967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cervical Spine Injuries: A Whole-Body Musculoskeletal Model for the Analysis of Spinal Loading.
    Cazzola D; Holsgrove TP; Preatoni E; Gill HS; Trewartha G
    PLoS One; 2017; 12(1):e0169329. PubMed ID: 28052130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Simulation Methods in Cervical Spine Dynamics.
    Sun MS; Cai XY; Liu Q; Du CF; Mo ZJ
    J Healthc Eng; 2020; 2020():7289648. PubMed ID: 32952989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical investigation of factors affecting cervical spine injuries during rollover crashes.
    Hu J; Yang KH; Chou CC; King AI
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2529-35. PubMed ID: 18978594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact responses of the cervical spine: A computational study of the effects of muscle activity, torso constraint, and pre-flexion.
    Nightingale RW; Sganga J; Cutcliffe H; Bass CR
    J Biomech; 2016 Feb; 49(4):558-64. PubMed ID: 26874970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of MR-derived cross-sectional guideline of cervical spine muscles to validate neck surface electromyography placement.
    Alizadeh M; Knapik GG; Marras WS
    J Electromyogr Kinesiol; 2018 Dec; 43():127-139. PubMed ID: 30273920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative cervical spine injury responses in whiplash loading with a numerical method of natural neural reflex consideration.
    Liang Z; Mo F; Zheng Z; Li Y; Tian Y; Jiang X; Liu T
    Comput Methods Programs Biomed; 2022 Jun; 219():106761. PubMed ID: 35344767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of an EMG-driven, graphically based isometric musculoskeletal model of the cervical spine.
    Netto KJ; Burnett AF; Green JP; Rodrigues JP
    J Biomech Eng; 2008 Jun; 130(3):031014. PubMed ID: 18532863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of control strategies for the cervical muscles of an average female head-neck finite element model.
    Putra IPA; Iraeus J; Thomson R; Svensson MY; Linder A; Sato F
    Traffic Inj Prev; 2019; 20(sup2):S116-S122. PubMed ID: 31617760
    [No Abstract]   [Full Text] [Related]  

  • 17. Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling.
    Yoganandan N; Kumaresan S; Pintar FA
    Clin Biomech (Bristol, Avon); 2001 Jan; 16(1):1-27. PubMed ID: 11114440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a 10-year-old child ligamentous cervical spine finite element model.
    Dong L; Li G; Mao H; Marek S; Yang KH
    Ann Biomed Eng; 2013 Dec; 41(12):2538-52. PubMed ID: 23817769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biologically-assisted curved muscle model of the lumbar spine: Model validation.
    Hwang J; Knapik GG; Dufour JS; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():153-159. PubMed ID: 27484459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a finite element model of the human cervical spine.
    Zafarparandeh I; Erbulut DU; Lazoglu I; Ozer AF
    Turk Neurosurg; 2014; 24(3):312-8. PubMed ID: 24848166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.