These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 31715479)

  • 81. Changes in the biochemical and nutrient composition of seafood due to ocean acidification and warming.
    Lemasson AJ; Hall-Spencer JM; Kuri V; Knights AM
    Mar Environ Res; 2019 Jan; 143():82-92. PubMed ID: 30471787
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves.
    Gobler CJ; DePasquale EL; Griffith AW; Baumann H
    PLoS One; 2014; 9(1):e83648. PubMed ID: 24416169
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life.
    Gobler CJ; Baumann H
    Biol Lett; 2016 May; 12(5):. PubMed ID: 27146441
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transcriptomic profiling of adaptive responses to ocean acidification.
    Goncalves P; Jones DB; Thompson EL; Parker LM; Ross PM; Raftos DA
    Mol Ecol; 2017 Nov; 26(21):5974-5988. PubMed ID: 28833825
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Emergent effects of global change on consumption depend on consumers and their resources in marine systems.
    Kindinger TL; Toy JA; Kroeker KJ
    Proc Natl Acad Sci U S A; 2022 May; 119(18):e2108878119. PubMed ID: 35446691
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Can greening of aquaculture sequester blue carbon?
    Ahmed N; Bunting SW; Glaser M; Flaherty MS; Diana JS
    Ambio; 2017 May; 46(4):468-477. PubMed ID: 27848102
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.
    Gomiero A; Bellerby RGJ; Manca Zeichen M; Babbini L; Viarengo A
    Environ Pollut; 2018 May; 236():60-70. PubMed ID: 29414375
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Ocean acidification increases polyspermy of a broadcast spawning bivalve species by hampering membrane depolarization and cortical granule exocytosis.
    Han Y; Shi W; Tang Y; Zhao X; Du X; Sun S; Zhou W; Liu G
    Aquat Toxicol; 2021 Feb; 231():105740. PubMed ID: 33440272
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The combined effects of climate change stressors and predatory cues on a mussel species.
    Manríquez PH; Jara ME; González CP; Seguel ME; Domenici P; Watson SA; Anguita C; Duarte C; Brokordt K
    Sci Total Environ; 2021 Jul; 776():145916. PubMed ID: 33639464
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Differential DNA methylation in Pacific oyster reproductive tissue in response to ocean acidification.
    Venkataraman YR; White SJ; Roberts SB
    BMC Genomics; 2022 Aug; 23(1):556. PubMed ID: 35927609
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches.
    Byrne M
    Mar Environ Res; 2012 May; 76():3-15. PubMed ID: 22154473
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification?
    Chakravarti LJ; Jarrold MD; Gibbin EM; Christen F; Massamba-N'Siala G; Blier PU; Calosi P
    Evol Appl; 2016 Oct; 9(9):1133-1146. PubMed ID: 27695521
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Transgenerational acclimation of fishes to climate change and ocean acidification.
    Munday PL
    F1000Prime Rep; 2014; 6():99. PubMed ID: 25580253
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification.
    Johnson KM; Hofmann GE
    BMC Genomics; 2017 Oct; 18(1):812. PubMed ID: 29061120
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Naturally acidified habitat selects for ocean acidification-tolerant mussels.
    Thomsen J; Stapp LS; Haynert K; Schade H; Danelli M; Lannig G; Wegner KM; Melzner F
    Sci Adv; 2017 Apr; 3(4):e1602411. PubMed ID: 28508039
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Climate change does not affect the seafood quality of a commonly targeted fish.
    Coleman MA; Butcherine P; Kelaher BP; Broadhurst MK; March DT; Provost EJ; David J; Benkendorff K
    Glob Chang Biol; 2019 Feb; 25(2):699-707. PubMed ID: 30414338
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean.
    Foo SA; Byrne M
    Adv Mar Biol; 2016; 74():69-116. PubMed ID: 27573050
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification.
    Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL
    BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi.
    Zha S; Liu S; Su W; Shi W; Xiao G; Yan M; Liu G
    Fish Shellfish Immunol; 2017 Dec; 71():393-398. PubMed ID: 29056489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.