These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31715562)

  • 1. Adaptive Calibration of Electrode Array Shifts Enables Robust Myoelectric Control.
    Zhang X; Wu L; Yu B; Chen X; Chen X
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1947-1957. PubMed ID: 31715562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved High-Density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural Network.
    Wu L; Zhang X; Wang K; Chen X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2637-2646. PubMed ID: 33052847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualized Evidences for Detecting Novelty in Myoelectric Pattern Recognition using 3D Convolutional Neural Networks
    Wu L; Zhang X; Chen X; Chen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2641-2644. PubMed ID: 31946438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejecting Novel Motions in High-Density Myoelectric Pattern Recognition Using Hybrid Neural Networks.
    Wu L; Chen X; Chen X; Zhang X
    Front Neurorobot; 2022; 16():862193. PubMed ID: 35418847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Electrode Calibration Method Based on Muscle Core Activation Regions and Its Application in Myoelectric Pattern Recognition.
    Hu R; Chen X; Zhang X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():11-20. PubMed ID: 33021932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Transfer Learning Approach to Reducing the Effect of Electrode Shift in EMG Pattern Recognition-Based Control.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):370-379. PubMed ID: 31880557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms.
    Muceli S; Jiang N; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array.
    Boschmann A; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4324-7. PubMed ID: 23366884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position Identification for Robust Myoelectric Control Against Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3121-3128. PubMed ID: 33196444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust myoelectric pattern recognition using online sequential extreme learning machine for finger movement classification.
    Anam K; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7266-9. PubMed ID: 26737969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder.
    Lv B; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5652-5655. PubMed ID: 30441618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Improved Gray-Level Co-Occurrence Matrix With High Density Grid for Myoelectric Control Robustness to Electrode Shift.
    He J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1539-1548. PubMed ID: 28026779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode Shifts Estimation and Adaptive Correction for Improving Robustness of sEMG-Based Recognition.
    Li Z; Zhao X; Liu G; Zhang B; Zhang D; Han J
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1101-1110. PubMed ID: 32750979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift.
    Young AJ; Hargrove LJ; Kuiken TA
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2537-44. PubMed ID: 21659017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of interelectrode distance on the robustness of myoelectric pattern recognition systems.
    Young AJ; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3873-9. PubMed ID: 22255185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.