These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
3. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Contessi Negrini N; Bonnetier M; Giatsidis G; Orgill DP; Farè S; Marelli B Acta Biomater; 2019 Mar; 87():61-75. PubMed ID: 30654214 [TBL] [Abstract][Full Text] [Related]
4. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
5. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
6. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of 3D Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering. Tytgat L; Kollert MR; Van Damme L; Thienpont H; Ottevaere H; Duda GN; Geissler S; Dubruel P; Van Vlierberghe S; Qazi TH Macromol Biosci; 2020 Apr; 20(4):e1900364. PubMed ID: 32077631 [TBL] [Abstract][Full Text] [Related]
8. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Tytgat L; Van Damme L; Van Hoorick J; Declercq H; Thienpont H; Ottevaere H; Blondeel P; Dubruel P; Van Vlierberghe S Acta Biomater; 2019 Aug; 94():340-350. PubMed ID: 31136829 [TBL] [Abstract][Full Text] [Related]
9. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
10. Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration. Helgeland E; Rashad A; Campodoni E; Goksøyr Ø; Pedersen TØ; Sandri M; Rosén A; Mustafa K Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33592589 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
12. Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide. Luo C; Xie R; Zhang J; Liu Y; Li Z; Zhang Y; Zhang X; Yuan T; Chen Y; Fan W Tissue Eng Part C Methods; 2020 Jun; 26(6):306-316. PubMed ID: 32349648 [TBL] [Abstract][Full Text] [Related]
13. Boron nitride nanotubes reinforced gelatin hydrogel-based ink for bioprinting and tissue engineering applications. Kakarla AB; Kong I; Nguyen TH; Kong C; Irving H Biomater Adv; 2022 Oct; 141():213103. PubMed ID: 36084352 [TBL] [Abstract][Full Text] [Related]
14. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198 [TBL] [Abstract][Full Text] [Related]
15. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Rutz AL; Hyland KE; Jakus AE; Burghardt WR; Shah RN Adv Mater; 2015 Mar; 27(9):1607-14. PubMed ID: 25641220 [TBL] [Abstract][Full Text] [Related]
16. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells]. ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684 [No Abstract] [Full Text] [Related]
17. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Tanadchangsaeng N; Pasanaphong K; Tawonsawatruk T; Rattanapinyopituk K; Tangketsarawan B; Rawiwet V; Kongchanagul A; Srikaew N; Yoyruerop T; Panupinthu N; Sangpayap R; Panaksri A; Boonyagul S; Hemstapat R Sci Rep; 2024 Oct; 14(1):23240. PubMed ID: 39369014 [TBL] [Abstract][Full Text] [Related]
18. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
20. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]