These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31715659)

  • 1. Zn(II) suppresses biofilm formation in Bacillus amyloliquefaciens by inactivation of the Mn(II) uptake.
    Huang Z; Wu L; Li X; Ma L; Borriss R; Gao X
    Environ Microbiol; 2020 Apr; 22(4):1547-1558. PubMed ID: 31715659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing.
    Kröber M; Verwaaijen B; Wibberg D; Winkler A; Pühler A; Schlüter A
    J Biotechnol; 2016 Aug; 231():212-223. PubMed ID: 27312701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of biofilm in Bacillus amyloliquefaciens Q-426 by diketopiperazines.
    Wang JH; Yang CY; Fang ST; Lu J; Quan CS
    World J Microbiol Biotechnol; 2016 Sep; 32(9):143. PubMed ID: 27430510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9.
    Zhou X; Zhang N; Xia L; Li Q; Shao J; Shen Q; Zhang R
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hygrocin C from marine-derived Streptomyces sp. SCSGAA 0027 inhibits biofilm formation in Bacillus amyloliquefaciens SCSGAB0082 isolated from South China Sea gorgonian.
    Wang J; Nong XH; Amin M; Qi SH
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1417-1427. PubMed ID: 29189900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root-Secreted Spermine Binds to
    Liu Y; Feng H; Chen L; Zhang H; Dong X; Xiong Q; Zhang R
    Mol Plant Microbe Interact; 2020 Mar; 33(3):423-432. PubMed ID: 31741422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.
    Gallegos-Monterrosa R; Kankel S; Götze S; Barnett R; Stallforth P; Kovács ÁT
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28583948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling.
    Shemesh M; Chai Y
    J Bacteriol; 2013 Jun; 195(12):2747-54. PubMed ID: 23564171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bistability and biofilm formation in Bacillus subtilis.
    Chai Y; Chu F; Kolter R; Losick R
    Mol Microbiol; 2008 Jan; 67(2):254-63. PubMed ID: 18047568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targets of the master regulator of biofilm formation in Bacillus subtilis.
    Chu F; Kearns DB; Branda SS; Kolter R; Losick R
    Mol Microbiol; 2006 Feb; 59(4):1216-28. PubMed ID: 16430695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Inhibition of Bacterial Biofilm Through Interference of Protein-Protein Interaction of Master Regulator Proteins: a Proof of Concept Study with SinR- SinI Complex of Bacillus subtilis.
    Kantiwal U; Pandey J
    Appl Biochem Biotechnol; 2023 Mar; 195(3):1947-1967. PubMed ID: 36401726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm: New insights in the biological control of fruits with Bacillus amyloliquefaciens B4.
    Nie LJ; Ye WQ; Xie WY; Zhou WW
    Microbiol Res; 2022 Dec; 265():127196. PubMed ID: 36116146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates.
    Zhang N; Yang D; Wang D; Miao Y; Shao J; Zhou X; Xu Z; Li Q; Feng H; Li S; Shen Q; Zhang R
    BMC Genomics; 2015 Sep; 16(1):685. PubMed ID: 26346121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of extracellular polymeric substances of Bacillus amyloliquefaciens SQR9 induced by root exudates of cucumber.
    Kimani VN; Chen L; Liu Y; Raza W; Zhang N; Mungai LK; Shen Q; Zhang R
    J Basic Microbiol; 2016 Nov; 56(11):1183-1193. PubMed ID: 27254757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium.
    Gallegos-Monterrosa R; Mhatre E; Kovács ÁT
    Microbiology (Reading); 2016 Nov; 162(11):1922-1932. PubMed ID: 27655338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-like proteins (ClpA, ClpB, ClpC, and ClpD) are required for biofilm formation and adhesion to plant roots by Bacillus amyloliquefaciens FZB42.
    Zhao X; Wang Y; Shang Q; Li Y; Hao H; Zhang Y; Guo Z; Yang G; Xie Z; Wang R
    PLoS One; 2015; 10(2):e0117414. PubMed ID: 25658640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular mechanism for bacterial susceptibility to zinc.
    McDevitt CA; Ogunniyi AD; Valkov E; Lawrence MC; Kobe B; McEwan AG; Paton JC
    PLoS Pathog; 2011 Nov; 7(11):e1002357. PubMed ID: 22072971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of
    Kobayashi K
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30718304
    [No Abstract]   [Full Text] [Related]  

  • 19. The lipopeptide 6-2 produced by Bacillus amyloliquefaciens anti-CA has potent activity against the biofilm-forming organisms.
    Song B; Wang YZ; Wang GY; Liu GL; Li WZ; Yan F
    Mar Pollut Bull; 2016 Jul; 108(1-2):62-9. PubMed ID: 27184127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.
    Hsueh YH; Ke WJ; Hsieh CT; Lin KS; Tzou DY; Chiang CL
    PLoS One; 2015; 10(6):e0128457. PubMed ID: 26039692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.