These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3171583)

  • 1. Regional cerebral glucose metabolism and blood flow during the silent phase of methylmercury neurotoxicity in rats.
    Hargreaves RJ; Eley BP; Moorhouse SR; Pelling D
    J Neurochem; 1988 Nov; 51(5):1350-5. PubMed ID: 3171583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local cerebral glucose utilization and blood flow during metabolic acidosis.
    Kuschinsky W; Suda S; Sokoloff L
    Am J Physiol; 1981 Nov; 241(5):H772-7. PubMed ID: 7304767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoradiographic determination of cerebral glucose content, blood flow, and glucose utilization in focal ischemia of the rat brain: influence of the plasma glucose concentration.
    Nedergaard M; Jakobsen J; Diemer NH
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):100-8. PubMed ID: 3339100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain.
    Cremer JE; Cunningham VJ; Seville MP
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):291-302. PubMed ID: 6874738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in the rat.
    Benveniste H; Drejer J; Schousboe A; Diemer NH
    J Neurochem; 1987 Sep; 49(3):729-34. PubMed ID: 3612121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of glycerol on local cerebral glucose utilization and local cerebral blood flow of hypoxic rats].
    Itoh E; Takiguchi H; Shimizu A; Wako N; Ueno H; Chigasaki H; Ishii S
    No To Shinkei; 1987 Mar; 39(3):227-33. PubMed ID: 3580211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional cerebral blood flow and glucose utilization during hypocapnia and adenosine-induced hypotension in the rat.
    Waaben J; Husum B; Hansen AJ; Gjedde A
    Anesthesiology; 1989 Feb; 70(2):299-304. PubMed ID: 2492411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional cerebral blood flow and glucose utilization during hyperinsulinemia.
    Duckrow RB
    Brain Res; 1988 Oct; 462(2):363-6. PubMed ID: 3191397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The comparative toxicology of ethyl- and methylmercury.
    Magos L; Brown AW; Sparrow S; Bailey E; Snowden RT; Skipp WR
    Arch Toxicol; 1985 Sep; 57(4):260-7. PubMed ID: 4091651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HA1077, a novel calcium antagonistic antivasospasm drug, increases both cerebral blood flow and glucose metabolism in conscious rats.
    Sako K; Tsuchiya M; Yonemasu Y; Asano T
    Eur J Pharmacol; 1991 Dec; 209(1-2):39-43. PubMed ID: 1814759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotoxicity produced by intracranial administration of methylmercury in rats.
    Richardson RJ; Murphy SD
    Toxicol Appl Pharmacol; 1974 Aug; 29(2):289-300. PubMed ID: 4283694
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of the indirect dopaminomimetic diethylpemoline on local cerebral glucose utilization and local cerebral blood flow in the conscious rat.
    Beck T; Vogg P; Krieglstein J
    Eur J Pharmacol; 1986 Jun; 125(3):437-47. PubMed ID: 3732401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral blood flow and oxidative metabolism in conscious Fischer-344 rats of different ages.
    Takei H; Fredericks WR; London ED; Rapoport SI
    J Neurochem; 1983 Mar; 40(3):801-5. PubMed ID: 6827277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral blood flow, glucose use, and CSF ionic regulation in potassium-depleted rats.
    Schröck H; Kuschinsky W
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H250-7. PubMed ID: 3125750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of methylmercury chloride of low concentration on the rat brain.
    Yamamura K; Maehara N; Ueno N; Ohno H; Kishi R
    Ind Health; 1986; 24(4):235-41. PubMed ID: 3818365
    [No Abstract]   [Full Text] [Related]  

  • 16. Validation of the triple-tracer autoradiographic method in rats.
    Nakai H; Diksic M; Yamamoto YL
    Stroke; 1988 Jun; 19(6):758-63. PubMed ID: 3376168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling of cerebral blood flow and glucose metabolism in conscious rats with chronic renal hypertension.
    Wall KM; Wainman DS; Shaver SW; Gross PM
    Brain Res; 1990 Jun; 521(1-2):333-7. PubMed ID: 2207671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling of cerebral glucose supply and utilization after hexane-2,5-dione intoxication in the rat.
    Planas AM; Cunningham VJ
    J Neurochem; 1987 Mar; 48(3):816-23. PubMed ID: 3806106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the relationship between cerebral glucose transport and phosphorylation using 2-deoxyglucose.
    Hargreaves RJ; Planas AM; Cremer JE; Cunningham VJ
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):708-16. PubMed ID: 3793806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrovascular consequences of repeated exposure to NG-nitro-L-arginine methyl ester.
    Kelly PA; Ritchie IM; Collins FM
    Br J Pharmacol; 1995 Nov; 116(6):2771-7. PubMed ID: 8591003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.