BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3171656)

  • 1. Nonlinear systems analysis of the hippocampal perforant path-dentate projection. I. Theoretical and interpretational considerations.
    Sclabassi RJ; Eriksson JL; Port RL; Robinson GB; Berger TW
    J Neurophysiol; 1988 Sep; 60(3):1066-76. PubMed ID: 3171656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear systems analysis of the hippocampal perforant path-dentate projection. III. Comparison of random train and paired impulse stimulation.
    Berger TW; Eriksson JL; Ciarolla DA; Sclabassi RJ
    J Neurophysiol; 1988 Sep; 60(3):1095-109. PubMed ID: 3171658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear systems analysis of the hippocampal perforant path-dentate projection. II. Effects of random impulse train stimulation.
    Berger TW; Eriksson JL; Ciarolla DA; Sclabassi RJ
    J Neurophysiol; 1988 Sep; 60(3):1077-94. PubMed ID: 3171657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys.
    Bartesaghi R; Gessi T
    Hippocampus; 2004; 14(8):948-63. PubMed ID: 15390176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. I. Effects on linear and non-linear response characteristics.
    Robinson GB; Sclabassi RJ; Berger TW
    Brain Res; 1991 Oct; 562(1):17-25. PubMed ID: 1799869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input-output relations in the entorhinal-hippocampal-entorhinal loop: entorhinal cortex and dentate gyrus.
    Bartesaghi R; Gessi T; Migliore M
    Hippocampus; 1995; 5(5):440-51. PubMed ID: 8773256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization in vivo of the NMDA receptor-mediated component of dentate granule cell population synaptic responses to perforant path input.
    Blanpied TA; Berger TW
    Hippocampus; 1992 Oct; 2(4):373-88. PubMed ID: 1364048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of hippocampal dentate granule cell responsiveness to entorhinal cortical input following norepinephrine depletion.
    Robinson GB; Fluharty SJ; Zigmond MJ; Sclabassi RJ; Berger TW
    Brain Res; 1993 Jun; 614(1-2):21-8. PubMed ID: 7688646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity.
    Mizumori SJ; McNaughton BL; Barnes CA
    J Neurophysiol; 1989 Jan; 61(1):15-31. PubMed ID: 2493075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus.
    Kneisler TB; Dingledine R
    Hippocampus; 1995; 5(3):151-64. PubMed ID: 7550611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats.
    Lynch M; Sayin U; Golarai G; Sutula T
    J Neurophysiol; 2000 Dec; 84(6):2868-79. PubMed ID: 11110816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Idazoxan increases perforant path-evoked EPSP slope paired pulse inhibition and reduces perforant path-evoked population spike paired pulse facilitation in rat dentate gyrus.
    Knight J; Harley CW
    Brain Res; 2006 Feb; 1072(1):36-45. PubMed ID: 16426582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the nonlinear properties of the in vitro hippocampal perforant path-dentate system using multielectrode array technology.
    Dimoka A; Courellis SH; Gholmieh GI; Marmarelis VZ; Berger TW
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):693-702. PubMed ID: 18270006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of raphe nuclei on neuronal transmission from perforant pathway through dentate gyrus.
    Winson J
    J Neurophysiol; 1980 Nov; 44(5):937-50. PubMed ID: 6255111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical model of the population dynamics of hippocampal dentate granule cells.
    Chauvet GA; Berger TW
    Hippocampus; 2002; 12(5):698-712. PubMed ID: 12440584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phasic boosting of medial perforant path-evoked granule cell output time-locked to spontaneous dentate EEG spikes in awake rats.
    Bramham CR
    J Neurophysiol; 1998 Jun; 79(6):2825-32. PubMed ID: 9636089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medial and lateral perforant path evoked potentials are selectively modulated by pairing with glutamatergic activation of locus coeruleus in the dentate gyrus of the anesthetized rat.
    Edison HT; Harley CW
    Hippocampus; 2012 Mar; 22(3):501-9. PubMed ID: 21240916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information processing in the dentate gyrus.
    Hampson RE; Deadwyler SA
    Epilepsy Res Suppl; 1992; 7():291-9. PubMed ID: 1466769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.