BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3171657)

  • 1. Nonlinear systems analysis of the hippocampal perforant path-dentate projection. II. Effects of random impulse train stimulation.
    Berger TW; Eriksson JL; Ciarolla DA; Sclabassi RJ
    J Neurophysiol; 1988 Sep; 60(3):1077-94. PubMed ID: 3171657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear systems analysis of the hippocampal perforant path-dentate projection. III. Comparison of random train and paired impulse stimulation.
    Berger TW; Eriksson JL; Ciarolla DA; Sclabassi RJ
    J Neurophysiol; 1988 Sep; 60(3):1095-109. PubMed ID: 3171658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear systems analysis of the hippocampal perforant path-dentate projection. I. Theoretical and interpretational considerations.
    Sclabassi RJ; Eriksson JL; Port RL; Robinson GB; Berger TW
    J Neurophysiol; 1988 Sep; 60(3):1066-76. PubMed ID: 3171656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity.
    Mizumori SJ; McNaughton BL; Barnes CA
    J Neurophysiol; 1989 Jan; 61(1):15-31. PubMed ID: 2493075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. I. Effects on linear and non-linear response characteristics.
    Robinson GB; Sclabassi RJ; Berger TW
    Brain Res; 1991 Oct; 562(1):17-25. PubMed ID: 1799869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of hippocampal dentate granule cell responsiveness to entorhinal cortical input following norepinephrine depletion.
    Robinson GB; Fluharty SJ; Zigmond MJ; Sclabassi RJ; Berger TW
    Brain Res; 1993 Jun; 614(1-2):21-8. PubMed ID: 7688646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paired-pulse facilitation and inhibition in the dentate gyrus is dependent on behavioral state.
    Austin KB; Bronzino JD; Morgane PJ
    Exp Brain Res; 1989; 77(3):594-604. PubMed ID: 2806450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo.
    Sloviter RS
    Hippocampus; 1991 Jan; 1(1):31-40. PubMed ID: 1669342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization in vivo of the NMDA receptor-mediated component of dentate granule cell population synaptic responses to perforant path input.
    Blanpied TA; Berger TW
    Hippocampus; 1992 Oct; 2(4):373-88. PubMed ID: 1364048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Idazoxan increases perforant path-evoked EPSP slope paired pulse inhibition and reduces perforant path-evoked population spike paired pulse facilitation in rat dentate gyrus.
    Knight J; Harley CW
    Brain Res; 2006 Feb; 1072(1):36-45. PubMed ID: 16426582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.
    Bliss TV; Lomo T
    J Physiol; 1973 Jul; 232(2):331-56. PubMed ID: 4727084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paired-pulse facilitation in the dentate gyrus: a patch-clamp study in rat hippocampus in vitro.
    Andreasen M; Hablitz JJ
    J Neurophysiol; 1994 Jul; 72(1):326-36. PubMed ID: 7965017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phasic boosting of medial perforant path-evoked granule cell output time-locked to spontaneous dentate EEG spikes in awake rats.
    Bramham CR
    J Neurophysiol; 1998 Jun; 79(6):2825-32. PubMed ID: 9636089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats: II. Membrane factors underlying paired-pulse response profiles.
    Onn SP; Berger TW; Grace AA
    Synapse; 1994 Mar; 16(3):195-210. PubMed ID: 8197582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient method for studying short-term plasticity with random impulse train stimuli.
    Gholmieh G; Courellis S; Marmarelis V; Berger T
    J Neurosci Methods; 2002 Dec; 121(2):111-27. PubMed ID: 12468002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path.
    Bliss TV; Gardner-Medwin AR
    J Physiol; 1973 Jul; 232(2):357-74. PubMed ID: 4727085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of synaptic potentiation during kindling of the perforant path.
    Sutula T; Steward O
    J Neurophysiol; 1986 Sep; 56(3):732-46. PubMed ID: 3023561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of raphe nuclei on neuronal transmission from perforant pathway through dentate gyrus.
    Winson J
    J Neurophysiol; 1980 Nov; 44(5):937-50. PubMed ID: 6255111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus parameters affecting paired-pulse depression of dentate granule cell field potentials. II. Low-frequency stimulation.
    Burdette LJ; Masukawa LM
    Brain Res; 1995 May; 680(1-2):63-72. PubMed ID: 7663985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.