BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31717379)

  • 1. Massive Loss of Olfactory Receptors But Not Trace Amine-Associated Receptors in the World's Deepest-Living Fish (
    Jiang H; Du K; Gan X; Yang L; He S
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31717379
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Gerringer ME; Linley TD; Jamieson AJ; Goetze E; Drazen JC
    Zootaxa; 2017 Nov; 4358(1):161-177. PubMed ID: 29245485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation.
    Wang K; Shen Y; Yang Y; Gan X; Liu G; Hu K; Li Y; Gao Z; Zhu L; Yan G; He L; Shan X; Yang L; Lu S; Zeng H; Pan X; Liu C; Yuan Y; Feng C; Xu W; Zhu C; Xiao W; Dong Y; Wang W; Qiu Q; He S
    Nat Ecol Evol; 2019 May; 3(5):823-833. PubMed ID: 30988486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome-level genome assembly of hadal snailfish reveals mechanisms of deep-sea adaptation in vertebrates.
    Xu W; Zhu C; Gao X; Wu B; Xu H; Hu M; Zeng H; Gan X; Feng C; Zheng J; Bo J; He LS; Qiu Q; Wang W; He S; Wang K
    Elife; 2023 Dec; 12():. PubMed ID: 38134226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the vision of the hadal snailfish Pseudoliparis swirei through proteomic analysis of the eye.
    Yan G; Lian CA; Lan Y; Qian PY; He L
    Proteomics; 2021 Oct; 21(19):e2100118. PubMed ID: 34329538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles.
    Blanton JM; Peoples LM; Gerringer ME; Iacuaniello CM; Gallo ND; Linley TD; Jamieson AJ; Drazen JC; Bartlett DH; Allen EE
    mSphere; 2022 Apr; 7(2):e0003222. PubMed ID: 35306867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium.
    Hashiguchi Y; Nishida M
    Mol Biol Evol; 2007 Sep; 24(9):2099-107. PubMed ID: 17634392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic organization and evolution of olfactory receptors and trace amine-associated receptors in channel catfish, Ictalurus punctatus.
    Gao S; Liu S; Yao J; Li N; Yuan Z; Zhou T; Li Q; Liu Z
    Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):644-651. PubMed ID: 27773705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea.
    Mu Y; Bian C; Liu R; Wang Y; Shao G; Li J; Qiu Y; He T; Li W; Ao J; Shi Q; Chen X
    PLoS Genet; 2021 May; 17(5):e1009530. PubMed ID: 33983934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olfactory function in the trace amine-associated receptor family (TAARs) evolved twice independently.
    Dieris M; Kowatschew D; Korsching SI
    Sci Rep; 2021 Apr; 11(1):7807. PubMed ID: 33833329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Brain-Expressed Biogenic Amine Receptors into Olfactory Trace Amine-Associated Receptors.
    Guo L; Dai W; Xu Z; Liang Q; Miller ET; Li S; Gao X; Baldwin MW; Chai R; Li Q
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35021231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated pseudogenization of trace amine-associated receptor genes in primates.
    Eyun SI
    Genes Brain Behav; 2019 Jul; 18(6):e12543. PubMed ID: 30536583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of cichlid TAAR genes and comparison with other teleost TAAR repertoires.
    Azzouzi N; Barloy-Hubler F; Galibert F
    BMC Genomics; 2015 Apr; 16(1):335. PubMed ID: 25900688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular evolution of teleost olfactory receptor gene families.
    Korsching S
    Results Probl Cell Differ; 2009; 47():37-55. PubMed ID: 18956167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary patterns and selective pressures of odorant/pheromone receptor gene families in teleost fishes.
    Hashiguchi Y; Furuta Y; Nishida M
    PLoS One; 2008; 3(12):e4083. PubMed ID: 19116654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts.
    Hussain A; Saraiva LR; Korsching SI
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4313-8. PubMed ID: 19237578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic organization and evolution of the trace amine-associated receptor (TAAR) repertoire in Atlantic salmon (Salmo salar).
    Tessarolo JA; Tabesh MJ; Nesbitt M; Davidson WS
    G3 (Bethesda); 2014 Apr; 4(6):1135-41. PubMed ID: 24760389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.
    Eyun SI; Moriyama H; Hoffmann FG; Moriyama EN
    PLoS One; 2016; 11(3):e0151023. PubMed ID: 26963722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity and evolution of the vertebrate chemoreceptor gene repertoire.
    Policarpo M; Baldwin MW; Casane D; Salzburger W
    Nat Commun; 2024 Feb; 15(1):1421. PubMed ID: 38360851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and characterization of olfactory receptor genes in common carp (Cyprinus carpio).
    Wang H; Chen L; Dong C; Chen B; Li B; Li X; Xu P
    Gene; 2021 Apr; 777():145468. PubMed ID: 33539942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.